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Abstract. In this paper, we evaluate a tool chain to algorithmically an-
alyze real-time requirements. According to this tool chain, one formalizes
the requirements in a natural-language pattern system. The requirements
can then be automatically compiled into formulas in a real-time logic.
The formulas can be checked automatically for properties whose viola-
tion indicates an error in the requirements specification (the properties
considered are: consistency, rt-consistency, vacuity). We report on a fea-
sibility study in the context of several automotive projects at Bosch.
The results of the study indicate that the effort for the formalization of
real-time requirements is acceptable; the analysis algorithms are compu-
tationally feasible; the benefit (the detection of specification errors resp.
the formal guarantee of their absence) seems significant.

1 Introduction

According to common industrial practice, requirements are specified in natu-
ral language and checked for errors manually, e. g., by peer reviews [16]. The
shortcomings of this tool chain are well-known: the disambiguation of the (nat-
ural language) requirements is done by component specialists (instead of system
specialists) during implementation and testing; both, the cost and the error
detection rate of the manual checks do not scale well with the number of re-
quirements, which each affect another and cannot be analyzed in isolation [3].
Further, a review can detect errors but never guarantee their absence.

A tool chain for the formalization of requirements and the (subsequently
possible) formal, automatic analysis of requirements opens the perspective
of eliminating the above shortcomings. Much research has been invested re-
cently in language and tool support for both, formalization and analysis,
e. g., [14,6,7,18,12,13]. The question whether such a tool chain is feasible in
practice can not be decided by a principled argument that applies uniformly
to all practical settings; we need a number of feasibility studies which address
the question on a case-by-case basis. This paper presents such a study, for a
special case of behavioral requirements, namely real-time requirements, in the
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context of several automotive projects at Bosch. We call a requirement real-
time requirement if it contains an explicit timing bound, e. g., “If IRTest is set
then the infrared lamps are turned on after at most 10 s.”

We believe that real-time requirements are a good ‘first target’ for a feasibility
study. Their formulation tends to be concrete; i. e., they are more amenable to
formalization than other requirements. Real-time requirements are notoriously
hard to get right, and they appear in projects for safety-critical systems; i. e., the
extra need for quality assurance efforts is widely accepted. (The same reasons
gave the incentive for previous work on real-time requirements [14,12,13]).

This paper contributes a first comprehensive evaluation of a tool chain for the
algorithmic analysis of real-time requirements in a particular industrial setting.
The tool chain contains, in addition to the algorithms proposed in [12,13], also
a user-friendly input language which is indispensable in an industrial setting. In
particular, we combine a specialized specification language based on a system of
natural-language patterns [9,14] with analysis tools for requirements in a real-
time logic [12,13]. To allow that we developed a compiler from the specification
language into the real-time logic used in [12,13]; see Figure 1.

We perform a feasibility study in the context of several automotive projects at
Bosch and evaluate the tool chain in terms of the human effort required for the
formalization, the performance of the tools, and the outcome of the application
of the tool chain to each of the examples in the case study. The overall result of
the evaluation indicates that the tool chain is feasible and worthwhile. We will
now recount the results of the evaluation in greater detail.

Results of the Evaluation. As expected, the effort for the formalization of
real-time requirements was heavy. Two to three minutes per requirement in aver-
age seems still acceptable, however (in contrast with analysis), the formalization
of requirements is done one by one; i. e., it scales linearly in the number of re-
quirements. We chose the setting for our study where we start with already
existing sets of documented informal requirements. This separation between re-
quirements elicitation and formalization allows us to measure the effort spent for
the formalization. The by far largest chunk of the measured effort goes into un-
derstanding the requirements. We thus obtain a safe approximation of the effort
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Fig. 1: The tool chain evaluated in the feasibility study. The compiler from the
specification language to the real-time logic interfaces the manual formalization
and the automatic analysis; see also Figure 2.
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Fig. 2: In the tool chain, a specification language for real-time requirements is
used as an intermediate step between the informal part and the formalism used
as input for the analysis tools (the transition from the specification language to
the input format is automatic, i. e., done by a compiler).

that is spent in the (preferable) setting where the formalization is interleaved
with the elicitation.

We already knew that the computational complexity of the analysis algo-
rithms is high and that the tools still need to be optimized [12,13]. The situation
is comparable to model checking in that one cannot expect the tools to scale
uniformly, and the tools need to be specialized to the application domain. The
performance of the tools in our study (which ranges from several seconds to
more than an hour) is too irregular for an on line use, e. g., interleaved with
elicitation; for batch processing, as with our tool chain, the execution times on
the examples in our study are more than acceptable.

The benefit of applying the tool chain seems significant. The detection of
several specification errors in examples that had undergone extensive reviews
is a benefit of obvious practical value. That is, the tool chain has allowed us
to find errors that had escaped the reviews. Each error was detected because
of the violation of one of three correctness properties. If we had a larger set of
correctness properties that our tool chain could use, we might detect further
errors still hidden in the requirements specification. This opens an avenue for
further research.

The other kind of benefit, i. e., the formal guarantee of the absence of a
particular kind of error, is of a purely conceptual value. It is interesting to note,
however, that engineers at Bosch are quite keen on this functionality of the tool
chain. This is noteworthy since engineers are reputed to be pragmatic. Perhaps
mathematical certitude is an innate universal need, after all.

2 The Tool Chain

As depicted in Figure 1, the first step of the tool chain is manual and the second is
fully automatic. In the first step, the requirements engineer formalizes real-time
requirements in the specification language. The second step is a call to a tool
(with, as front end, a compiler from the specification language to the proper
input format of the analysis tools). We now briefly present the specification
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language, the different properties checked by each of the analysis tools, and the
analysis tools themselves.

In this paper, we rely on the results which state the correctness of the analysis
tools which we use in our case study; for completeness, we will explain the
properties checked by the analysis tools but we must refer to [14,12,13] for further
details about the foundation of the algorithms used in the tools.

2.1 The Specification Language

The specification language is depicted in Table 1. It is a restricted English
grammar based on the specification pattern system (SPS) given by Konrad and
Cheng [9].

Every pattern consists of non-literal terminals P,Q, c and literal terminals.
For example, in the bnd response pattern “it is always the case that if P holds,
then S holds after at most c time unit(s)”, P , S, and c are (the only) non-
literal terminals. The non-literal terminals P and S denote boolean propositional
formulae that capture properties of the system. The non-literal terminal c is
instantiated with constants. In the example of a requirement (in the specification
language) given in Figure 2, the pattern is instantiated by setting P to IRTest,
S to IRLampsOn, and c to 10.

The specification language is geared toward a person who is not formally
minded [14]. The use of the specification language in our tool chain is possible
only thanks to the compilation from the specification language into the mini-
malistic formalism used for the input of the analysis tools; see Figure 2. The
stakeholder only needs to care about the formulation of the requirements in the
specification language; their formulation in the real-time logic (the input format
of the analysis tools) is irrelevant for the stakeholder and only relevant for the
analysis tool.

2.2 Translation of the SPS to Duration Calculus

Konrad and Cheng provide a translation of their SPS to the logics TCTL (Timed
Computation Tree Logic), RTGIL (Real-Time Graphical Interval Logic) and
MTL (Metric Temporal Logic). In this work we translate the SPS to the Du-
ration Calculus fragment defined in [8]. Table 2 depicts our translation. These
formulas are further translated into Phase Event Automata (PEA) [8], on which
the consistency properties are checked.

Note that for the eventually pattern and the response pattern we need for
the scopes Globally, After Q, After Q until R the translation uses the Duration
Calculus operator B introduced by Skakkebæk [15]. For these six instances the
algorithms to check rt-consistency and vacuity cannot be directly applied, as
the algorithm to calculate a PEA representing a requirement is not defined for
requirements with the B operator. We circumvent this problem in our tool in
having defined the corresponding PEAs by hand.
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Start 1: property ::= scope specification .

Scope 2: scope ::= Globally | Before R | After Q | Between Q and R |
After Q until R

General 3: specification ::= qualitative | real-time | invariant

qualit.

4: qualitative ::= absence | universality | existence | bnd existence |
precedence | response

5: absence ::= it is never the case that P holds
6: universality ::= it is always the case that P holds
7: existence ::= P eventually holds
8: bnd. exist. ::= transitions to states in which P holds occur at most

twice
9: precedence ::= it is always the case that if P holds, then S previously

held
10: response ::= it is always the case that if P holds then S eventually

holds

real-time

11: real-time ::= min duration | max duration | bnd recurrence | bnd
response | bnd invariance

12: min dur. ::= it is always the case that once P becomes satisfied, it
holds for at least c time unit(s)

13: max dur. ::= it is always the case that once P becomes satisfied, it
holds for at most c time unit(s)

14: bnd recur. ::= it is always the case that P holds at least every c time
unit(s)

15: bnd resp. ::= it is always the case that if P holds, then S holds after
at most c time unit(s)

16: bnd inv. ::= it is always the case that if P holds, then S holds for
at least c time unit(s)

invariant 17: invariant ::= it is always the case that if P holds, then S holds as
well

Table 1: Restricted English grammar based on the grammar given by Konrad
and Cheng in [9].

2.3 The Correctness Properties

In the tool chain we check requirements for three properties: inconsistency, rt-
inconsistency and vacuity.

We say that a set of requirements ϕ is inconsistent if there exists no system
satisfying ϕ, e. g., it exists no system satisfying both “Req1: Once IRTest holds
it holds for at least 5 Seconds.” and “Req2: Once IRTest holds it holds for at
most 3 Seconds.”

The check for rt-inconsistency analyzes whether timing bounds of real-time
requirements may be in conflict. The formal definition of rt-inconsistency is given
in [12], e. g., the following two requirements are consistent but not rt-consistent :
“Req3: Globally, it is always the case that if IRTest holds, then IRLamps holds
after at most 10 seconds”, “Req4: Globally, it is always the case that if IRTest
holds, then ¬IRLamps holds for at least 6 seconds”. Say the observable IRTest
holds from time point 4 on for 6 seconds (as depicted in Figure 3). Then Req3
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Table 2: Translation of the SPS into Duration Calculus (Excerpt)
Scope Pattern Duration Calculus

Globally it is never the ¬(true; dP e; true)
Before R case that ¬(d¬Re; d¬R ∧ P e; d¬Re; true)
After Q P holds ¬(true; dQe; true; dP e; true)
Between Q
and R

¬(true; dQ ∧ ¬Re; d¬Re; dP ∧¬Re; d¬Re; dRe; true)

After Q
until R

¬(true; dQ ∧ ¬Re; d¬Re; dP ∧ ¬Re; true)

Globally P eventually (¬(d¬P e)) B true
Before R holds ¬(d¬R ∧ ¬P e; dRe; true)
After Q (¬(true; dQ ∧ ¬P e; d¬P e)) B true
Between Q
and R

¬(true; dQ ∧ ¬Re; d¬P ∧ ¬Re; dRe; true)

After Q
until R

¬(true; dQ ∧ ¬Re; d¬P ∧ ¬Re; dRe; true) ∧
(¬(true; dQ ∧ ¬P ∧ ¬Re; d¬P ∧ ¬Re)) B true

Globally it is always the (¬(true; dP ∧ ¬Se; d¬Se)) B true
Before R case that ¬(d¬Re; dP ∧ ¬S ∧ ¬Re; d¬S ∧ ¬Re; dRe; true)
After Q if P holds (¬(true; dQe; true; dP ∧ ¬Se; d¬Se)) B true
Between Q
and R

then S eventually
holds

¬(true; dQ ∧ ¬Re; d¬Re; dP ∧ ¬R ∧ ¬Se; d¬R ∧
¬Se; dRe; true)

After Q
until R

(¬(true; dQ∧¬Re; d¬Re; dP∧¬S∧¬Re; d¬S∧¬Re))B
true ∧ (¬(true; dQe; true; dP ∧ ¬Se; d¬Se)) B true

Globally it is always the ¬(true; dP ∧ ¬Se; d¬Se ∧ ` > c; true)
Before R case that if ¬(d¬Re; d¬R ∧ P ∧ ¬Se; d¬R ∧ ¬Se ∧ ` > c; true)
After Q P holds then ¬(true; dQe; true; dP ∧ ¬Se; d¬Se ∧ ` > c; true)
Between Q
and R

S holds after at
most c time units

¬(true; dQ∧¬Re; d¬Re; dP∧¬R∧¬Se; d¬S∧¬Re∧` >
c; d¬Re; dRe; true)

After Q
until R

¬(true; dQ∧¬Re; d¬Re; dP∧¬R∧¬Se; d¬S∧¬Re∧` >
c; true)
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requires that IRLamps appears not later than t = 14. At the same time Req4
requires that IRLamps does not hold until at least t = 16—a conflict. Formally,
a set of requirements is rt-inconsistent if there is a a finite trace satisfying all
requirements that cannot be extended to an infinite trace.

IRTest 

IRLamps

IRTest=0 IRTest=1 &
IRLamps=0

IRTest=0 &
IRLamps=0

4 6 8 10 12 1420 time

1

0

1

0

Fig. 3: Req3 and Req4 are rt-inconsistent.

The check for vacuity checks whether there is a requirement in the set that
is only vacuously satisfied in the context of the set. The formal definition is
given in [13], e. g., the following requirements are consistent and rt-consistent
but vacuous: “Req5 : Globally, it is always the case that if IRTest holds then
IRLamps holds after at most 10 seconds”, “Req6: Globally, it is never the case
that IRTest holds”. In every system satisfying both requirements the observable
IRTest never holds (according to Req6), i. e., the precondition of Req5 never
holds. Thus, in the context of the set of requirements Req5 is only vacuously
satisfied. We assume that a requirements engineer specifies only requirements
with behavior that shall be visible in a system, thus we assume that there is an
error in the requirements and call Req5 vacuous with the set of requirements.

To formally define vacuity, a purely syntactical characterization of simpler re-
quirements is needed. In our case a requirement is of the form ¬(ϕ1; . . . ;ϕn; true)
and simpler requirements are those, where some trailing phases ϕi; . . . ;ϕn are
omitted. Then a requirement ϕ is vacuous in the context of a set of requirement,
if there is a simpler requirement that is equivalent in the context. For example,
if in some context, the requirement “after Q it is never the case that P holds”,
¬(true; dQe; truedP e; true), is equivalent to “it is never the case that Q holds”,
¬(true; dQe; true), we say that the first requirement is vacuous in that context.

2.4 The Tool

We have assembled a prototype tool that parses requirements formalized in the
specification language and automatically transforms them into formulae in a real-
time logic (the Duration Calculus); it then analyzes the formulae to check the
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formalized requirements for consistency, rt-consistency and vacuity ; see Figure 4.
The tool is written in Java and bases on the PEA-toolkit developed by [11] and
the model checker UPPAAL [2]. Every algorithm is sound and complete (i. e.,
for every input data the decision procedure returns a correct answer). If the set
of requirements is rt-inconsistent, the tool returns a counterexample (a possible
behavior that leads to a timing conflict). If the set of requirements is incongruous
then the tool returns the requirement that is incongruous in the set.

tool

compile 
requirements into 
Duration Calculus

formulae

transform 
requirements 

into
Phase Event 

Automata

consistent? non-vacuous? rt-consistent?

no

yesrequirements in 
specification 

language

nono

yes yes

Fig. 4: The prototype tool compiles requirements in specification language to Du-
ration Calculus formulae; it then starts the analysis tools, i. e., it transforms the
logical formulae into a Phase Event Automaton and then checks for consistency,
vacuity, and rt-consistency.

3 Planning of the Feasibility study

3.1 Study Goals and Questions

In order to assess the practical relevance of the tool chain in the automotive
context, two main questions must be addressed. First, what is the benefit of the
tool chain? Second, what are the costs of applying the tool chain?

A preliminary question is whether requirements engineers and software devel-
opers are in principle willing to use the specification language for requirements.
We addressed this question in an informal inquiry, before starting the actual fea-
sibility study which addresses the two questions above. We asked requirements
engineers at Bosch to take some of their behavioral requirements and reformu-
late them in the specification language. We showed requirements formalized in
the specification language to software developers at Bosch and asked them to
explain their meaning to us. The reaction was only positive; i. e., the specifica-
tion language seems easy to use, both for writing and reading. In the context of
this inquiry, the request for tool support was constantly repeated.

Before developing a tool that is fit for an industrial use, we decided to first
develop a prototype tool and start with evaluating the two questions above in
a feasibility study on requirements of different Bosch projects. To summarize,
we identified the following two items for evaluation in the study.

(Benefit) Is the tool chain useful in terms of quality assurance for require-
ments, resp., does it help to identify errors that were not detected in a manual
review? Does it support a user in resolving the errors?
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(Cost) What effort (measured in time) is needed to formulate requirements
in the specification language? Are the analysis algorithms computationally
feasible for the examples in the study?

3.2 Selection of the Sample

In the first step we selected requirements documents from different Bosch
projects of the automotive domain. To get a representative sampling, we decided
to apply stratified sampling over the automotive application domains driving as-
sistance, engine controlling, car multimedia, catalytic converter development and
power train development. We then used convenience sampling to select a project
out of every stratum.

Each project had several requirements documents, some consisting of more
than 100 pages. In order to get a representative sample of requirements we
asked the corresponding requirements engineers to give us 1 to 4 sets of require-
ments (representative for their domain and containing behavioral requirements
and real-time requirements), each specifying a system component. This way we
obtained sixteen sets of requirements.

3.3 Feasibility Study Design

In the first step we formulated the requirements in the specification language.
Every set of requirements was then again reviewed with feedback from the re-
sponsible requirement engineers, and, if needed, changed until we agreed that
the meaning of the informal requirements was accurately represented in the re-
quirements formulated in the specification language. For one project we let the
requirements engineer directly translate the requirements in SPS, in this case we
were just available as coach. We then used the tool to automatically transform
the requirements into Duration Calculus formulae. We checked the requirements
with the help of our tool for consistency, rt-consistency and vacuity on a PC
Windows XP system with 2 GHz Intel Core 2 Duo processor and 1 GB RAM,
whereas only one core was used. If the tool detected an error we searched the
reason for the error, fixed it and then checked the set again (until the set was
consistent, rt-consistent and non-vacuous). We measured the execution time as
CPU-time needed to parse the requirements, transform them to Duration Cal-
culus formulae and then do the respective check.

4 Analysis of the Results

4.1 Benefit

Benefit Table 3 depicts the validation results for each component. The specifics
of the components are not relevant; hence we do not present them and just
number the examples from 1 to 16 (first column). The second column refers to
the size of the input in the number of requirements. Columns 3 to 6 refer to the
outcome of the consistency/vacuity/rt-consistency check.
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#req consistent? non-vacuous? rt-consistent?

1 9 yes yes no

2 10 yes n/a no

3 10 yes yes no

4 12 yes yes yes

5 13 yes yes yes

6 17 yes yes yes

7 17 yes yes no

8 18 yes yes no

9 27 yes yes yes

10 27 yes yes yes

11 29 yes yes no

12 40 yes yes no

13 48 n/a n/a n/a

14 58 n/a n/a n/a

15 81 yes no yes

16 81 yes yes yes

Table 3: Checking consistency, rt-consistency and vacuity for existing examples of sets
of real-time requirements for software components in automotive projects at Bosch
using a prototype implementation (Fig. 4).

As Table 3 shows, every component (except Component 13 and 14) was con-
sistent. We guess that this indicates that the manual review process successfully
detected any inconsistencies. For Component 13 and 14 we got an out-of-memory
error thus we could not determine the consistency.

Regarding vacuity, the automatic validation could guarantee the absence of
vacuities for 12 components, in one component it detected an error. In Com-
ponent 8 the precondition of the following requirement was never satisfied “If
accelerationPedal = 0 and brakePedalActivated then regeneration holds after
at most 1 time unit.” Debugging the requirements we found out that another
requirement was ambiguously specified as “The value range of the acceleration
pedal is between 0 and 100.” This second requirements was misinterpreted as
“0 < accelerationPedal < 100” instead of “0 ≤ accelerationPedal ≤ 100”.
We resolved the ambiguity and changed the requirement to “The value range of
the acceleration pedal is between 0 and 100 where the endpoints of the interval
are included”. The needed change was only a minor change, but the analysis
helped to discover an ambiguous requirement. Thus, the check for vacuity was
beneficial. Note that only the biggest component contained an vacuity. We see
two possible reasons for that. First, it might be that in practice vacuity only
rarely occurs. Second, it might be that vacuities occurred, but they were already
detected in the manual reviews and subsequently resolved. In the belief of the
requirements engineers at Bosch, vacuity occurs in practice. Thus, we believe
that the vacuities were resolved in the earlier steps. This would also explain,
why the vacuity was detected in the biggest component—large components are
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much more difficult to review for humans, as it gets difficult to keep the inter-
dependencies in mind.

For three components our algorithm returned with an out-of-memory error.
Note that the space of solution tends to explode, if there are not many interde-
pendencies between the requirements in the set. If there are many interdepen-
dencies, then the space of solution gets reduced. Thus, the instances that are
difficult to check for the tool, are often quite easy to review for a human—and
vice versa: the instances with many interdependencies, which are more difficult
to grasp for a human, get easy to check for the tool. Thus, for this property it
seems that the automatic and the manual analysis might well complement each
other.

Most errors were discovered by the rt-consistency-check: seven out of 16
components were in fact rt-inconsistent, i. e., for Components 1, 2, 3, 7, 8, 11
and 12, the check identified flaws in the requirement specification that needed to
be repaired. Major changes were needed to correct these requirements. e. g., for
Component 3, two of the existing requirements were deleted, five were changed,
and seven new requirements were added.

Fixing the errors was an iterative process, with up to 10 iterations. In every
iteration we thought to have fixed the problem, but then the check again found
an rt-inconsistency. The output-interpretation then helped us to identify the
reason of the errors. Thus, although rt-inconsistencies seem to appear frequently
in requirements specifications this property seems to be difficult to detect for
humans. The benefit of this check is thus very high.

For Component 4, 5, 6, 9, 10 and 15 the tool chain assured the consistency,
non-vacuity, and rt-consistency of the requirements. The tool chain helped us to
assure the quality of six components, and to detect 8 errors in the requirements
that were not known before. Three of the errors were even found in the smallest
sets of requirements. We thus think that the tool chain is even beneficial for
smaller sets of requirements.

Costs To evaluate whether the benefit of applying our tool chain justifies its
costs, we measure the time needed to formalize the requirements and second
the execution time needed by our tool (i. e., the time the requirements engineer
needs to wait for the results).

To express the informal requirements in the SPS we needed in average about
2–3 minutes per requirement, i. e., for Component 1 to 9 we needed 26 Min,
30 Min, 28 Min, 35 Min, 25 Min, 28 Min, 32 Min, 38 Min, 60 Min, and 2 h
50 Min for Component 16. Most of the time was needed to understand the
meaning of the informal requirement, the reformulation itself was then quickly
done. However even two minutes per requirement may scale to a considerable
amount of time as in the automotive domain there are often thousands of re-
quirements for one product. However, if the tool chain is integrated within the
development processes (i.e, the requirements are directly formulated in the SPS
when developing the requirements) then these costs could be omitted.
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Secondly, we evaluate the execution time of the tool. If the requirements
engineer needs to wait a long time before getting the validation results this is
costly. As he is working on other topics in the meantime, he will need some time
to familiarize himself again with the requirements, and it will need more time
to debug the requirements. In practice, the requirements engineer needs to wait
for the results of a manual review for some days. Thus, our tool chain has to
compete with that time slot. The execution time for the checks is considerably
smaller. The longest execution time took 1 h 32 Min—a big improvement. Thus,
with respect to the waiting time, applying the tool chain might even decrease
the costs of requirements engineering, as the requirements engineer can validate
a set of requirements directly when specifying the requirements.

Over all, it seems that the tool chain is very beneficial and the costs of
applying the tool chain are reasonable, they might even slightly decrease. How-
ever, there is one restriction: we suspect that for big sets of requirements the
space of solutions grows explosively. For Component 13 and 14, our checks re-
turned with an Out-of-Memory-Error. Further optimizations are needed to de-
velop efficient algorithms, still the algorithms have to handle the state explosion
problem [19,12]. We think that the tool chain is cost-effective when validating
component requirements or sets of component requirements, but probably not
suited to validate the set of all system requirements at once. Further studies on
bigger sets of requirements are needed to confirm or refute that belief.

4.2 Observations

Usability. In an initial survey we had asked requirements engineers of Bosch
to apply the SPS on requirements. The results indicated that they thought the
SPS easy to apply and easy to learn. This was confirmed in our feasibility study:
initially, the training curve was steep. For the first requirements the requirements
engineer needed up to 10 minutes per requirement to express the requirement
in SPS, i. e., to compare the requirement with the available patterns. But once
he had used a pattern at least once the needed time considerably decreased
to 1–3 minutes. Further, all requirements engineers could directly explain the
meaning of a requirement in SPS. Only the use of the different scopes needed
some explanation. Thus, we think that the SPS as input language is suited for
the whole development team, even without much training.

In contrast, we believe that to interpret the output of the checks a more
extensive training is needed. For a given set of requirements we return the check
result, and if the set is rt-inconsistent a run to the rt-inconsistency, and if it
is vacuous the set of requirements that are only vacuously satisfied. Without
training, the engineers could interpret the check results, but they had some
problems in interpreting the runs. But without the runs, the requirements are
very difficult to debug. Thus, we think that the tool chain allows that many
developers specify requirements, and they can do so directly in SPS. But we
recommend that only the requirements engineer checks the requirements for
consistency, rt-consistency and non-vacuity. This way, only the requirements
engineer needs to be trained in interpreting the output of the checks.
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For some requirements it was difficult to decide, whether the requirement
should be formalized with an “invariant pattern” or with a “(bounded) response
pattern”, e. g., the requirement “If the system is in error-mode then AssistFunc-
tion has to be deactivated” might be formalized as “Globally, it is always the
case that if errorMode holds then ¬AssistFunctionActive holds as well”, ex-
pressing the desired invariant relation between the two variables. However, on
a deeper abstraction level, that may not be quite true. Say the system state is
calculated in one software function, and AssistFunction is implemented in an-
other function. Both functions are called in the same task, and AssistFunction
checks the system state when being called. Then the formalization “Globally, if
errorMode holds, then ¬AssistFunction holds after at most 10 ms.” would be
more appropriate. The natural language requirement may be the same on every
abstraction level, although its meaning changes depending on the context. In
contrast the formalized requirements must change depending on the abstraction
levels—they make the change of the semantics explicit.

Specification Language. We further noticed that if a requirements engineer
specified a system component in SPS, then the requirements in SPS tended
to contain more information than the ones in natural language, e. g., the re-
quirement “If the locally measured voltage is not available for Local Voltage
Usage (InternVoltageError), the system voltage value as received from the bus
shall be used.” was expressed in SPS as “Globally, it is always the case that if
¬BusOff ∧ InternVoltageError holds then VoltageValue’=VoltageValueFromBus
eventually holds”. The requirements engineer used the implicit knowledge, that
the voltage value received from the bus is only received if the bus is not off.
Thus, it seems that the SPS is a way to make implicit knowledge more explicit.

Nearly all requirements in the case study specified invariant or future behav-
ior. The precedence pattern was only used once.Further, about two thirds of the
requirements were formalized using the invariant pattern(it is always the case
that if P holds then S holds as well) or (bounded) response pattern (it is always
the case that if P holds then S eventually holds, resp., then S holds after at most
C time units. The other patterns were only rarely used. We believe that this
is the case, as for the specification of the behavioral requirements the systems
were seen as blackbox. Thus, the resulting requirements mostly relate input and
output variables to each other.

What we found a bit surprising was that there was no need to express uncer-
tainty or prioritization in the specification language. When asking the require-
ments engineers, they said that all requirements needed to be implemented,
there are no “nice-to-have” requirements. The only prioritization needed is the
one to decide what requirement has to be implemented for what release—but this
question was managed with the help of requirements attributes. Furthermore, al-
though there is a high degree of uncertainty in the requirements, this uncertainty
is hidden within application parameters, e. g., say AssistFunction shall only be
active if the vehicle speed is above a certain threshold, however the value of that
threshold is not yet known. Then, the requirements engineers invent an applica-
tion parameter and specify the requirement like, e. g., “if velocity ≤ threshold
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holds then ¬AssistFunctionActive holds as well”. This way, uncertainty is re-
solved using application parameters.

Change Requests. We detected three items to tailor the specification language by
Konrad and Cheng to the automotive domain. First, the requirements engineers
asked for a new pattern, specifying invariant behavior. They wanted to express
requirements like if P holds then S holds as well. In the specification language
given by [9] this behavior can be expressed using the absencepattern, i. e., via “it
is never the case that P∧¬S holds”. However, the requirements engineers thought
it to be not intuitive, to specify invariant behavior via the absence pattern. We
thus extended the specification language with the further pattern, to improve
the intuitiveness. Second, some requirements engineers asked us to omit the “it
is always the case that” in the precedence, response, min duration, max duration,
bnd recurrence-, bnd response and bnd invariance pattern. They noted that this
part of the pattern sounded strange in combination with the Globally scope.
Third, we needed one further pattern. In the error handler concept, errors need
to be qualified (i. e., they need to be detected during some time) before they are
stored in the error memory. To express such a behavior we needed one further
pattern, “if P holds for at least c time units then S holds after at most c time
units.”.

5 Threats to Validity

In this section, we analyze threats to validity defined in Wohlin [17]. Note that
the results of the study are only valid in the given context, we do not aim to
make any generalizations. Threats to validity concerning the suitability of the
specification language are discussed in [14].

5.1 Construct Validity

Expectancy Effect. Expectations of an evaluator toward the outcome can affect
a study. We formulated the informal requirements in the specification language.
However, the reliability analysis in [14] suggests that applying the specification
language is sufficiently independent of the evaluator. Furthermore, the require-
ments were automatically analyzed by a tool, thus the number of errors is ob-
jectively measured.

Inadequate Preoperational Explication of Constructs. This threat arises if the
measures are not well defined. In order to minimize that threat we discussed
with experts whether our properties inconsistency, rt-inconsistency and vacu-
ity represent their concept of erroneous behavioral requirements. The discussion
indicated that the properties seem to capture erroneous requirements. Further-
more, we formally (i. e., unambiguously) defined the properties. We obtained a
safe approximation of the effort that is spent for the formalization and the check
in separating elicitation, formalization, and analysis, i. e., in measuring the effort
to formulate an informal requirement in specification language (independent of
the elicitation effort) and the execution time of the analysis tools.
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5.2 External Validity

Sampling validity. This threat arises if the sample is not representative for the
requirements. The defects in the requirements specifications might over or under
represent the defects in the rest of the corporate requirements specifications.
In order to minimize this threat we used the selection procedure described in
Section 3.2. A limitation of the feasibility study is that we only used requirements
of Bosch projects. Thus we cannot extend our results to the whole automotive
domain.

6 Conclusion

The contribution of this paper is twofold. First, we showed how to build-up a
tool chain that combines a user-friendly input language (based on a SPS) with
an automatic check for consistency, rt-consistency and non-vacuity as proposed
in [12,13] for requirements specified in the real-time logic Duration Calculus.
Second, we have evaluated the tool chain to algorithmically analyze real-time
requirements, in the context of several automotive projects at Bosch. In partic-
ular, compared to the case studies in [12,13] we extended the number of samples
to 16 samples from six samples in [12] and eleven samples in [13]. The results of
the study indicate that the effort for the formalization of real-time requirements
is acceptable, that the analysis algorithms are computationally feasible, and that
the benefit (the detection of specification errors resp. the formal guarantee of
their absence) seems significant. This is encouraging. However, before we can
turn the tool chain into a technology that is apt for industrial use, we need to
solve a number of research and engineering problems related to scalability and
usability. Another avenue for research is to identify more meta-requirements that
can be formalized and automatically analyzed, in addition to the three we con-
sidered in this paper. The more meta-requirements we have, the more errors in
our requirements specifications we will automatically detect (at first), and the
more (mathematically founded) trust in our requirements specification we will
gain (at last).
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