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Abstract. We present a new counterexample-guided abstraction refine-
ment scheme. The scheme refines an over-approximation of the set of
possible traces. Each refinement step introduces a finite automaton that
recognizes a set of infeasible traces. A central idea enabling our approach
is to use interpolants (assertions generated, e.g., by the infeasibility proof
for an error trace) in order to automatically construct such an automa-
ton. A data base of interpolant automata has an interesting potential for
reuse of theorem proving work (from one program to another).

1 Introduction

The automatic refinement of abstraction is an active research topic in static
analysis [1,3,4,5,6,7,8,9,10,11,13,12,15,16,18]. It is widely agreed that the calls to
a theorem prover, as used in existing methods for the construction of a sequence
of increasingly precise abstractions, represent an obstacle to scalability. The
problem is accentuated when costly decision procedures are employed to deal
with arrays and heaps [19,20,23]. One way to address this obstacle is to increase
the reuse of theorem work [11,13,12,18]. The question is in what form one should
combine the results of theorem prover calls, and in what form they should be
presented and stored.

Let us informally investigate the shortcomings inherent to the usage of
theorem provers in the classical counterexample-guided abstraction refinement
scheme (as, e.g., in [1,2,5,12,13,15]).

– In a first step, the theorem prover is called to prove the infeasibility of an
error trace (in case it is a spurious counterexample). The corresponding
unsatisfiability proof is then used for nothing but guessing the constituents
of the new abstraction. If, as in [12,15], the unsatisfiability proof is used to
generate interpolants which contain valuable information about the reason
of infeasibility, then these are cannibalized for their atomic conjuncts.

– In a second step, the theorem prover is called to construct the transformer
for the new abstraction; this step does not exploit the theorem proving work
invested in the first step; in fact, the subsequent analysis of the new abstrac-
tion realizes a second proof of the infeasibility of the previous error trace.

– The theorem prover constructs the transformer for each new abstraction from
scratch (at least on the part of the transformer’s domain that has changed).

– The theorem proving work starts for each new program from scratch. This
means all theorem proving work is done on-line, whereas ideally, most if not
all of it should be done off-line, i.e., in a pre-processing step.
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In this paper, we present a new counterexample-guided abstraction refinement
scheme which overcomes the above shortcomings. The scheme refines an over-
approximation of the set of possible traces (whereas existing schemes refine an
over-approximation of the set of possible states). Each refinement adds another
finite automaton that recognizes a set of infeasible traces. The alphabet of such
a trace automaton is the set of statements; a trace is nothing but a word over
this alphabet. A central idea enabling our approach is to use interpolants in
order to automatically construct such an automaton (interpolants are assertions
generated by the infeasibility proof for the error trace). The resulting interpolant
automaton accepts not only the error trace but a whole set of infeasible traces
of varying shape and length.

The idea of using interpolants for the construction of an automaton over-
comes a major difficulty in the construction of automata for the approximation
of possible traces. Existing constructions (e.g., in [14,21]) are based on ad hoc
criteria; while the resulting methods succeed on several interesting examples,
they are not general or complete. We also note the relvance of the alphabet for
the automaton. If the alphabet consists of labels of edges (of the control flow
graph or, as in [14,21], a hybrid system), then the definition of infeasibility must
refer to that labeling. In contrast, our notion of infeasibility depends solely on
the semantics of statements (i.e., of the programming language).

One perspective opened up by our work is a refinement loop that queries a
database of interpolant automata; if there exists one that accepts the submitted
error trace (which means that the error trace is not feasible), then the interpolant
automaton gets added as another component to the trace abstraction. In this
scenario, the interpolant automata can be constructed off-line (automatically, or
manually using interactive verification methods).

2 Example

The correctness of the annotated program P in Fig. 1 is defined by the validity
of its assertions. The correctness can be stated equivalently with the help of the
automaton AP depicted in Fig. 2, the so-called program automaton. The tran-
sition graph of AP is the control flow graph of P where assertions are translated
to edges to an error state.

The program automaton recognizes a set of words over the alphabet of state-
ments (statements are framed in order to stress that they are used as letters of
an alphabet). Each accepted word is a trace along a path in the control flow
graph. The correctness of the annotated program P is expressed by the fact
that all such traces are infeasible (which means that there is no valid execution
leading from the initial location to the error location).

We next describe how our refinement scheme will generate a sequence of
trace abstractions and, finally, prove the correctness of P. Generally, each trace
abstraction is a tuple of automata (A1 . . .An) over the alphabet of statements.
An automaton in the tuple recognizes a subset of infeasible traces. This subset
is used to restrict the set of traces recognized by the program automaton.
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`0: x=0

`1: y=0

`2: while(nondet) {x++}
assert(x!=-1)

assert(y!=-1)

Fig. 1. Annotated program P. The program P is correct if the assertions are valid.

`0 `1 `2 `err
x:=0 y:=0

x++

x==-1

y==-1

Fig. 2. Program automaton AP encoding the correctness of P. The program P is
correct iff every word accepted by AP is an infeasible trace.

First Iteration of Refinement Loop. The initial trace abstraction (for the
first iteration of the refinement loop) is the empty tuple. The resulting restriction
of the program automaton is the program automaton itself. In our example, the
program automaton is not empty; it accepts, e.g., the trace π1.

π1 = x:=0 . y:=0 . x++ . y==-1

The trace π1 is returned as the counterexample of the first iteration of the re-
finement loop. A theorem prover is called to analyze the counterexample. The
trace π1 is infeasible. The unsatisfiability proof showing this, is used to con-
struct the automaton A1 depicted in Fig. 3. This automaton accepts not only
the trace π1 but all traces that are infeasible for the same reason as π1. In more
detail: the unsatisfiability proof returns a sequence of interpolants. Each trace
accepted by A1 has the same sequence of interpolants as π1, up to repetition
of subsequences of interpolants, and it is in this precise sense that it has the
same “reason of infeasibility” as π1. As explained later, the states qi are in bi-
jection with interpolants in the sequence, which is why we call A1 an interpolant
automaton.

Second Iteration of Refinement Loop. The second abstraction (obtained
from refining the initial abstraction) is the tuple (A1) consisting of one compo-
nent, the automaton derived in the previous refinement. The resulting restriction
of the program automaton is the intersection of the program automaton with
the complement of A1. In our example, the resulting automaton does not accept
the trace π1, the counterexample in the first refinement. Still, it is not empty; it
accepts, e.g., the trace π2.

π2 = x:=0 . y:=0 . x++ . x==-1
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q0 q1 q2

x:=0

y:=0

x++

y==-1

Fig. 3. Interpolant automaton A1, constructed from the unsatisfiability proof for the
error trace π1 = x:=0 . y:=0 . x++ . y==-1 . It recognizes the set of traces that are infea-
sible for the same reason as π1.

The trace π2 is returned as the counterexample of the second iteration of the
refinement loop. Again, a theorem prover is called to analyze the counterexample.
The trace π2 is infeasible as well. Again, the unsatisfiability proof showing this,
is used to construct an automaton, A2 depicted in Fig. 4.

q0 q1 q2
x:=0

y:=0

x++

x==-1

Fig. 4. Interpolant automaton A2 which is constructed from the unsatisfiability proof
for the counterexample π2 = x:=0 . y:=0 . x++ . x==-1 .

Third and Final Iteration of the Refinement Loop. The third abstraction
(obtained from refining the second abstraction) is the tuple (A1,A2) constructed
by extending the previous tuple with another component, the automaton derived
in the previous refinement. The resulting restriction of the program automaton is
the intersection of the program automaton with the complement of A1 and with
the complement of A2. In our example, the resulting automaton AP ∩ A1 ∩ A2

does not accept the trace π2, the counterexample in the first refinement. In fact,
it does not accept any word; it is empty. The emptiness of AP ∩A1 ∩A2 proves
the correctness of the annotated program P.

In each iteration of the refinement loop, only the first step (the construc-
tion of the interpolant automaton from the unsatisfiability proof for the coun-
terexample) involves theorem proving work. The second step is an operation on
automata, i.e., on graphs; it does not involve formulas.
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3 Traces

We assume a fixed set of statements Σ. We will consider Σ as an alphabet and
statements as its letters. A trace π = st1 . . . stn is a word over this alphabet; i.e.,
π ∈ Σ∗.

It is important to realize that the notion of a trace is independent of a pro-
gram (a trace may not correspond to a path in the program’s control flow graph)
and independent of the programming language semantics (a trace may not cor-
respond to any possible execution). In order to stress the usage of statements as
letters of an alphabet, we sometimes frame each statement/letter. For example,
we can write the alphabet of the example program in Section 2 as

Σex = { x:=0 , y:=0 , x++ , x==-1 , y==-1 }

and
π = x++ . x:=0 . x:=0 . y==-1 . x==-1

is a possible trace. All automata that we consider in this work are automata over
the given alphabet Σ; i.e., they recognize sets of traces.

Program Automaton AP . We present an annotated program P directly as a
trace automaton AP which we call the program automaton. We can obtain the
program automaton in two ways. If we start with an annotated program as in
Fig. 1 then we translate the assertions to edges to an error location in the control
flow graph. In the resulting program automaton

AP = 〈LOC, δP , {`init}, {`err}〉,

– the automaton states are program locations,
– the transition relation δP contains exactly the edges (`, st, `′) of the control

flow graph,
– the (unique) initial state is the (unique) initial location,
– the (unique) final state is the (unique) error location.

Alternatively, we may follow the automata-theoretic approach to program
verification [22]. We use an LTL formula ϕ to specify a safety property (e.g., a
second lock statement is not executed before an unlock statement). Let A¬ϕ be
the automaton that accepts all bad prefixes, i.e., traces that witness the violation
of the safety property specified by ϕ. Let ACFG be the automaton whose states
are the program locations of P, whose transition graph is the control flow graph
of P, and each state is accepting. We construct the program automaton AP as
the intersection of ACFG and A¬ϕ. It accepts all traces that violate the safety
property ϕ and follow a path in the control flow graph of P.

Error Trace. We call a trace accepted by the program automaton AP an error
trace. An error trace corresponds to a path from the initial location to the error
location. In order to determine if such a path corresponds to a possible execution,
the semantics of the statements has to be taken into account.
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Infeasibility. We assume that the semantics of statements is given by
the (strongest) postcondition operator post. The predicate post(st, ϕ) is the
(strongest) postcondition of the predicate ϕ under the statement st. The ex-
tension of the postcondition from a statement to a trace is straightforward.

We define that the trace π = st1 . . . stn is infeasible if

post(π,>) ⊆ ⊥

which expresses that the trace π has no possible execution.
Alternatively, infeasibility can be stated in terms of the (weakest) precon-

dition operator. We use wp(st, ϕ) to denote the (weakest) precondition of the
predicate ϕ under the statement st. A trace π is infeasible if

> ⊆ wp(π,⊥)

It is important to realize that the notion of feasibility is independent from
the control flow graph (i.e., a feasible trace may not correspond to any path in
the control flow graph).

Correctness. Having defined the notion of infeasibility, we can use the program
automaton AP to define correctness. The annotated program P is correct if
every trace accepted by AP is infeasible, formally

L(AP) ⊆ INFEASIBLE.

4 Trace Abstraction

The program automaton AP encodes what trace is a path according to the
control flow graph of the program. We will use a trace abstraction to encode a
sufficient condition for when a trace is infeasible according to the semantics of
the programming language.

Definition 1 (Trace Abstraction (A1, . . . ,An)). A trace abstraction is given
by a tuple of automata (A1, . . . ,An) such that each Ai recognizes a subset of
infeasible traces, for i = 1 . . . n.

Having separated the program-specific information and the programming
language-specific information by the program automaton AP and a trace ab-
straction (A1, . . . ,An), we need to combine the two in order to reason about
correctness. This combination comes again in the form of an automaton; we de-
fine it as the intersection of the program automaton with the complements of
A1, . . . ,An, which we write

AP ∩ A1 ∩ . . . ∩ An

where we use the symbol ∩ for the intersection of automata and A for the com-
plement of the automaton A (and assume that these two operations on automata
implement the corresponding two operations on the recognized languages).
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Proof Method Based on Trace Abstraction. Given the program automaton AP ,
we say that the trace abstraction (A1, . . . , An) does not admit an error trace if
the language recognized by the automaton AP ∩ A1 ∩ . . . ∩ An is empty.

L(AP ∩ A1 ∩ . . . ∩ An) = ∅

In this presentation we do not investigate how one can implement the empti-
ness test efficiently. Let us mention however, that the emptiness test can be
done on the fly; only the reachable part of this abstraction has to be computed
and not all components qi in a state of the product (q1, . . . qn) have to be made
explicit.

The next two theorems state that a sound and complete proof method can
be based on trace abstraction. By the algebraic properties of the intersection
operation, the proof method based on trace abstraction is modular; i.e., the
components Ai can be constructed independently one from another and their
order does not matter.

Theorem 1 (Soundness). If a trace abstraction (A1, . . . ,An) does not admit
an error trace, i.e., L(AP ∩ A1 ∩ . . . ∩ An) = ∅, then the program P is correct.

Proof. The assumption L(AP ∩ A1 ∩ . . . ∩ An) = ∅ means that every trace
accepted by AP is accepted by one of A1, . . . ,An.

L(AP) ⊆ L(A1) ∪ · · · ∪ L(An)

By definition of trace abstraction, eachAi recognizes a subset of infeasible traces.

L(A1) ∪ · · · ∪ L(An) ⊆ INFEASIBLE

Hence, every trace accepted by AP is infeasible, which is how the correctness of
the program P is defined. ut

According to folklore wisdom, if completeness holds, then it does for a trivial
reason which does not provide any further insight. The proof method based on
trace abstraction is no exception.

Theorem 2 (Completeness). If the program P is correct, then there exists a
trace abstraction (A1, . . . ,An) that does not admit an error trace, i.e., L(AP ∩
A1 ∩ . . . ∩ An) = ∅.

Proof. Assume P is correct. Then, by definition, AP does not accept an error
trace, which is equivalent to L(AP) ⊆ INFEASIBLE. We set n = 1 and choose the
trace abstraction (A1) where A1 = AP . If we “implement” this abstraction we
get the automaton AP ∩ AP which recognizes the empty set. Hence (A1) does
not admit an error trace. ut
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5 CEGAR for Trace Abstraction

In the iterated refinement scheme depicted in Fig. 5, we transfer the classical
check-analyze-refine loop to trace abstraction. The initial trace abstraction is the
empty tuple of automata (n = 0). If the trace abstraction (A1, . . . ,An) admits
an error trace, say π, we check whether π is infeasible. If this is the case, we
extend the trace abstraction with an automaton An+1 that accepts (at least)
the infeasible trace π.

annotated program P

P is correct P is incorrect

L(AP ∩ A1 ∩ . . . ∩ An) = ∅ ? π ∈ INFEASIBLE ?

no

return error trace π
such that

π ∈ L(AP ∩ A1 ∩ . . . ∩ An)

yes

return trace automaton An+1

such that
π ∈ L(An+1) and

L(An+1) ⊆ INFEASIBLE

yes no

n := 0

Fig. 5. Counterexample-guided abstraction refinement scheme for trace abstraction.
The program P is correct if L(AP) ⊆ INFEASIBLE.

Incrementality. If the trace abstraction (A1, . . . ,An) does not admit an error
trace then it still does not when we add any number of components to the
tuple. As a consequence, in a series of successive refinements, one never has to
withdraw a previously added component (“superfluous components in a tuple
do not hurt”).

Progress. The infeasible error trace π returned in the n-th iteration of the refine-
ment loop gets eliminated by the refined abstraction; i.e., the trace abstraction
(A1, . . . ,An,An+1) does not admit the error trace π.
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6 Interpolant Automata

In the setting of iterated refinement for trace abstraction (Fig. 5) in the previous
section, it is trivial to construct an automaton An+1 that accepts exactly the
infeasible error trace π. The corresponding trivial refinement excludes one and
only one infeasible error trace. The question is how one can generalize the coun-
terexample, i.e., construct an automaton An+1 that recognizes a set consisting
of π and more infeasible traces. Ideally, those traces share with π the ‘reason of
infeasibility’.

An immediate idea is to augment the trivial automaton (which accepts ex-
actly the infeasible error trace π) with transitions that are labeled by “irrelevant
statements” and that are self-loops (transitions from and to the same automa-
ton state). A statement is irrelevant if it does not modify a variable whose value
determines the infeasibility. In our example from Section 2, in the construction
of the automaton A1 for the error trace π1 (see Fig. 3), one would thus obtain
the self-loop labeled x++ . One would, however, fail to add the self-loop labeled
x++ in the construction of the automaton A2. One would also fail to introduce
general loops in the construction of the automaton.

The first step towards a generally applicable construction is to consider a
sequence of predicates I0, I1, . . . , In (to which we refer as interpolants for rea-
sons that will become apparent later). In many settings that we consider, this
sequence is related to the error trace π; it may be generated, for example, by
the proof of the infeasibility of π.

The general notion of an interpolant automaton that we introduce below,
however, does not refer to an error trace. It refers to an arbitrary sequence of
predicates I0, I1, . . . , In. Given such a sequence, we will associate each predicate
Ii with an automaton state qi. The automaton states are not necessarily pairwise
distinct; i.e., we may associate two different predicates Ii and Ij with the same
automaton state, and we may associate the same predicate with two different
states (i.e., we may have Ii 6= Ij , qi = qj and we may have Ii = Ij , qi 6= qj).
The non-constructive definition below accommodates a wide range of possible
constructions. The definition of a canonical interpolant automaton further below
is constructive.

Definition 2 (Interpolant Automaton AI). Given a sequence of predicates
I = I0, I1, . . . , In (to which we will refer as “interpolants”), we call a trace
automaton

AI = 〈QI , δI , Qinit
I , Qfin

I 〉

an interpolant automaton if we can index its set of states QI with the set of
indices of the sequence {0, . . . , n},

QI = {q0, . . . , qn}

and thus associate each interpolant Ii with a state qi, such that the following
three conditions hold.
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– Each pair of interpolants associated with a state transition is inductive.

(qi, st, qj) ∈ δI implies post(st, Ii) ⊆ Ij

– Each interpolant associated with an initial state is the true predicate.

qi ∈ Qinit
I implies Ii = >

– Each interpolant associated with a final state is the false predicate.

qi ∈ Qfin
I implies Ii = ⊥

Theorem 3. An interpolant automaton AI recognizes a subset of infeasible
traces.

L(AI) ⊆ INFEASIBLE

Proof. We show (by induction on the length of a trace π) that if qj ∈ δ(π, qi)
then the inclusion post(π, Ii) ⊆ Ij holds. Thus, for every trace π accepted by AI
the inclusion

post(π,>) ⊆ ⊥,

holds, which means that π is infeasible. ut

Completeness. We may ask whether a proof method based on trace abstrac-
tion is still complete if the automata Ai of a trace abstraction (A1, . . . ,An)
are restricted to be interpolant automata. Again, the completeness argument is
disappointingly simple. If the program is correct, the program automaton AP
is an interpolant automaton. To see this, define Ii to be the set of states at
the location `i reachable from any state at location `0 (assuming the locations
of the program automaton AP are exactly `0, . . . , `n). We associate Ii with the
state `i of the program automaton. Since we assume that the program is correct,
we know that the interpolant associated with the error location `err is the false
predicate ⊥.

Interpolant Automata and Floyd-Hoare style Proofs of Program Correctness. In
the discussion of completeness above, we can more generally define Ii to be any
invariant assertion associated with the location `i in a Floyd-Hoare style proof of
the partial correctness of the program P. This is because, when we transfer the
partial-correctness statement to the control flow graph with the error location
`err, we will label the error location `err with the false predicate ⊥. The condition
on each pair of interpolants associated with a transition (in Definition 2) is
exactly the inductiveness of the invariant assertions in the Floyd-Hoare style
proof.

The proof of partial-correctness may refer to the full program or just a pro-
gram fragment, constituted, e.g., by the slice of the control flow graph which
is executed by the error trace π. In a concrete setting, there are many ways in
which one may obtain such a proof: manually, or by a constraint solving method
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as, e.g., in [3], or by one of the methods based on (counterexample-guided ab-
straction refinement of) state abstraction, e.g., [1,3,4,11,13,15,18].

Once the interpolant automaton is formed, it no longer carries any refer-
ence to program states (or invariant assertions and such). A trace automaton
is a graph; it is detached from both the original program and the semantics of
statements (as predicate transformers). As a consequence, refinement of trace
abstraction does not involve logical conjunction and theorem prover calls; it is
a graph operation.

Determinism. The general setting of non-deterministic trace automata is poten-
tially useful for a compact representation of infeasibility. If the trace automaton
is deterministic then its complement can have the same transition graph (up to
sink states which are introduced to obtain a total transition relation). This is
the case, e.g., when the trace automaton is the program automaton AP or, more
generally, when the transition graph of the trace automaton is a subgraph of the
(possibly partially unfolded) control flow graph (since a statement cannot lead
to different locations).

Canonical Interpolant Automaton. Next, we will introduce the notion of a
sequence of interpolants for the error trace π and use it to give a constructive
definition of a special case of an interpolant automaton.

Sequence of Interpolants for an Error Trace. Given an infeasible error trace π =
st1, . . . , stn, we call a sequence of predicates I = I0, I1, . . . , In a corresponding
sequence of interpolants (corresponding to π) if the following conditions hold
(where > is the true predicate and ⊥ is the false predicate).

– I0 = >
– post(sti+1, Ii) ⊆ Ii+1, for i = 0 . . . n− 1

– In = ⊥
If we split the trace π at any position i into a prefix st1 . . . sti and suffix sti+1 . . . stn
then every state reached under a possible execution of the prefix st1 . . . sti satisfies
Ii and no state satisfying Ii has a possible execution under the suffix sti+1 . . . stn.
In other words, the interpolant Ii is an overapproximation of the postcondition
of true under the prefix and an underapproximation of the weakest precondition
false under the suffix, formally

post(st1 . . . sti,>) ⊆ Ii ⊆ wp(sti+1 . . . stn,⊥).

A sequence of interpolants may be, but is not necessarily a sequence of Craig
interpolants generated from the proof of infeasibility of a counterexample (in the
spirit of [13,15,17,18]). A sequence of interpolants may also arise as the sequence
of invariant assertions along the sequence of program locations in a Hoare-style
proof (for the correctness of the program fragment corresponding to the spurious
counterexample).

In order to motivate the definition of the canonical interpolant automaton,
we will give a schematic example of its construction.
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Example. In the schematic setting depicted in Fig. 6, we assume that

– π = st1 . . . stn is an infeasible error trace along the locations `0, . . . , `n,
– I = I0, . . . , In is a corresponding sequence of interpolants,
– i and j are two positions such that j < i, `i = `j , and post(stj+1, Ii) ⊆ Ij+1.

To make the example simple, let us assume that `j is the only repeated location
in π. The assumption that `i is the same location as `j implies the existence of
a loop in the control flow graph that goes from `j via `j+1 . . . `i−1 back to `j .
The error trace π executes this loop exactly once.

We now construct the automaton AπI depicted in Fig. 6 by taking the trivial
automaton (which accepts only the one infeasible error trace π) and add exactly
one ‘back edge’, namely the transition (qi, stj+1, qj). The automaton AπI accepts
all traces that follow the same path in the control flow graph as π (and that
execute the loop through `j at least once).

L(AπI) = st1 . . . stjstj+1 . . . sti
(
stj+1 . . . sti

)?
sti+1 . . . stn

To see that the trace πk = st1 . . . stjstj+1 . . . sti(stj+1 . . . sti)
ksti+1 . . . stn is infea-

sible for k ≥ 0, we first observe that the inclusion post(stj+2 . . . sti, Ij+1) ⊆ Ii
holds by the definition of a sequence of interpolants for π. This together with
the assumption post(stj+1, Ii) ⊆ Ij+1 implies post(stj+1 . . . sti, Ii) ⊆ Ii. Thus,
the inclusion

post(stj+1 . . . sti(stj+1 . . . sti)
k, Ij) ⊆ Ii

holds for k ≥ 0. This implies post(πk,>) ⊆ ⊥, the infeasibility of πk. ut

`0 `1 `j−1 `j

`j+1 `i−1

`i+1 `n−1 `n
st1 stj

stj+1 sti

sti+1 stn

q0 q1 qj−1 qj

qj+1 qi−1

qi qi+1 qn−1 qn
st1 stj

stj+1 sti

sti+1 stn

stj+1

Fig. 6. The infeasible error trace π = st1 . . . stn follows the path with the loca-
tions `0, . . . , `n in the control flow with a loop through `j (`i = `j). We assume that
I = I0, . . . , In is a corresponding sequence of interpolants with post(stj+1, Ii) ⊆ Ij+1.
Adding the transition (qi, stj+1, qj) to the trivial automaton (which accepts only π)
results in the automaton AπI .
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Definition 3 (Canonical Interpolant Automaton AπI). Given a sequence
of interpolants I = I0, I1, . . . , In corresponding to the infeasible error trace
π = st1, . . . , stn along the sequence of locations `0, . . . , `n, we introduce pair-
wise different states q0, . . . , qn and define the canonical interpolant automaton
AπI for π and I as follows.

AπI = 〈QI , δI , Qinit
I , Qfin

I 〉

– QI = {q0, . . . , qn}

– δI = {(qi, stj+1, qj+1) | 0 ≤ j ≤ i ≤ n−1, `i = `j , post(stj+1, Ii) ⊆ Ij+1}

– Qinit
I = {q0}

– Qfin
I = {qn}

The canonical interpolant automaton AπI accepts the error trace π. This fol-
lows from the definition of the sequence of interpolants. In general AπI accepts an
infinite set of traces. In a sense, AπI accepts exactly the traces that are infeasible
for the same reason as π. More precisely, in order to prove the infeasibility of
a trace accepted by AπI , we can use the same sequence of interpolants (up to
repetition of subsequences) as in the proof of infeasibility of π.

The inclusions post(sti+1, Ii) ⊆ Ii+1 hold by the definition of sequence of
interpolants. Thus, after having generated the sequence of interpolants I (for the
proof of the infeasibility of the trace π), one needs additional theorem prover
calls only for each inclusion post(stj+1, Ii) ⊆ Ij+1 where j < i and `i = `j .
Thus, the number of additional theorem prover calls is bounded by the number
of repeated locations in the sequence of locations along the error trace π.

Speculative Computation of Infeasibility. The general definition of interpolant
automata accommodates optimizations where one invests theorem proving work
speculatively. That is, one checks the validity of inclusion other than the ones
required in the construction of the canonical interpolant automaton. The goal
is to add more edges to the transition graph, and thus obtain an interpolant
automaton that recognizes a larger set of infeasible traces. One possibility is to
remove the side-condition for i, j from the definition of δI , i.e., one checks the
inclusions post(stj+1, Ii) ⊆ Ij+1 for all pairs of locations. If the interpolant Ii is
subsumed by the interpolant Ij we may add a transition (q, st, qj) to the state
qj if the corresponding transition (q, st, qi) to the state qi exists. Yet another
possibility is to check the validity of inclusions post(st, Ii) ⊆ Ij where st is not
necessarily a statement in the error trace π. This leads to, e.g., exploring both
branches of a conditional statement and thus adding a branching structure to
the interpolant automaton.

Caching Infeasibility. When verifying many programs or program parts, similar
patterns of infeasible error traces may occur several times. Our notion of infea-
sibility is independent of a particular program. It allows the reuse of interpolant
automata for the verification of other programs. One can imagine a refinement
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scheme based on a database of interpolant automata. If the trace abstraction
(A1, . . . ,An) admits an error trace π then the database can be queried for an
automaton that accepts π (modulo variable renaming). If such an automaton
exists, then π is infeasible and the abstraction is refined to (A1, . . . ,An,An+1)
by adding the new automaton to the tuple.

Example. Reconsider the example of Section 2. The automata A1 (depicted in
Fig. 3) and A2 (depicted in Fig. 4) are interpolant automata resulting from a
construction similar to the canonical interpolant automaton where states qi and
qj are merged if the interpolants Ii and Ij are equal. (The test of equality of
predicates requires in general a call to the theorem prover.)

The automaton A1 is obtained from the corresponding sequence of inter-
polants

>, >, y = 0, y = 0, ⊥
given the error trace

π1 = x:=0 . y:=0 . x++ . y==-1 .

The automaton A2 is obtained from the corresponding sequence of interpolants

>, x ≥ 0, x ≥ 0, x ≥ 0, ⊥

given the error trace

π2 = x:=0 . y:=0 . x++ . x==-1 .

ut

7 Predicate Abstraction

In this section we compare predicate abstraction as in [1,3,4,5,13,12,15,16]) with
trace abstraction. We start by formalizing predicate abstraction. Given a finite
set of predicates, say

Pred = {p1, . . . , pm}
we call an m-tuple 〈b1, ..., bm〉 of possibly negated predicates a bitvector (we
assume a fixed order on the predicates).

〈b1, ..., bm〉 where bj is either pj or ¬pj , for j = 1, . . . ,m

Given a program P with the post operator post, we construct the relation δ#
between bitvectors (in principle by calling a theorem prover for each pair of
bitvectors and each statement).

δ# = {(〈b1, ..., bm〉, st, 〈b′1, ..., b′m〉 | post(st, b1 ∧ ... ∧ bm) ∩ b′1 ∧ ... ∧ b′m 6= ⊥}

The predicate abstraction of the program P wrt. Pred can be defined as the
finite-state abstract program P#

Pred, whose states are pairs of a program location
and a bitvector, and whose transitions are induced by the relation δ# between
bitvectors.
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Theorem 4. Predicate abstraction is a special case of trace abstraction: the
abstraction defined by a tuple of predicates can be expressed by a tuple consisting
of one single trace automaton.

Proof. We define the trace automaton A# whose states are the bitvectors, the
transition relation is δ#, and each state is an initial and a final state.

A# = 〈Q#, δ#, Q#, Q#〉

This automaton recognizes a superset of all feasible traces (and not just feasi-
ble traces of AP ; note that the transition relation δ# is total). We define the
automaton APred as the complement of A#. Since APred recognizes a subset of
infeasible traces, the 1-tuple (APred) is a trace abstraction.

APred = A#

The product of the program automaton AP with the complement of APred, i.e.,
with A#, is exactly the abstract program P#

Pred, the predicate abstraction of the
concrete annotated program P wrt. the set of predicates Pred.

P#
Pred = AP ∩ APred

Thus, the trace abstraction (APred) expresses the predicate abstraction of the
program P wrt. Pred. ut

Trace abstraction is strictly more expressive than predicate abstraction, since
it is not possible to derive predicates from trace automata (as explained above,
a trace automaton is detached from the original program and in particular it
does not convey the semantics of its statements as predicate transformers).

Refinement, Combination of Abstractions. Trace abstraction allows one to com-
bine abstractions with a minimal investment of theorem proving work. In order
to explicate this point, we will build on the fact (established above) that one can
use predicate abstraction to construct one or more of the component automata
Ai in a trace abstraction (A1, . . . ,An).

We now consider the combination of the two predicate abstractions defined
by the sets of predicates Pred1 and Pred2, once as the trace abstraction defined
by the 2-tuple of the two predicate abstractions, i.e.,

(APred1 ,APred2),

and once as the predicate abstraction for the set of predicates Pred defined by
the union of the two sets of predicates, Pred = Pred1 ∪ Pred2. As seen above,
this predicate abstraction can be expressed equivalently as the trace abstraction
defined by the 1-tuple with the automaton APred, i.e.,

(APred1∪Pred2
).

The combination as a trace abstraction (APred1
,APred2

) is coarser (in general
strictly coarser) than the combination as a predicate abstraction (APred1∪Pred2),
but it can be computed without additional theorem proving work. It is
possible to formally account for this phenomenon in terms of products of ab-
stract domains [6,7].
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8 Conclusion

We have presented a refinement scheme whose novelty lies in the following points.

– Trace abstraction instead of state abstraction. The goal of the iterated refine-
ment is the successive restriction of the approximation of the set of execution
traces (and not of the set of reachable states).

– Compositionality of refinement. The refinement is decomposed into inde-
pendent steps (the construction of one automaton does not build on another
automaton). The results of the individual steps are composed by a graph
operation (the intersection of automata).

– Interpolant automata. We use interpolants in order to construct an automa-
ton (which recognizes a set of infeasible traces). Interpolants can be Craig
interpolants, or any other inductive assertions in a Floyd-Hoare style proof.

– Coarse-grained caching. Each trace automaton represents the macro result
of a coherent set of theorem prover calls.

– Reuse from one program to another. The notion of an infeasible trace refers to
the programming language semantics. The refinement through an automaton
is applicable beyond one specific program.

The scope of this paper is to introduce the principles of the refinement scheme
for trace abstraction. Hence, we have aimed at the most general formulation pos-
sible. The question of the most practical instantiation of the refinement scheme
remains a topic of future work. In particular, the realization of a data base of
interpolant automata which accounts for common programming patterns raises
a number of interesting research issues.
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