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Abstract. We use a combination of three techniques for the specification of processes, data and time:
CSP, Object-Z and Duration Calculus. Whereas the combination of CSP and Object-Z is well established
by the work of C. Fischer [2, 3], the integration with Duration Calculus is new. The combination is used
to specify parts of a novel case study on radio controlled railway crossings.

1 Introduction

Complex computing systems exhibit various behavioural aspects such as communication be-
tween components, state transformation inside components, and real-time constraints on the
communications and state changes. Formal specification techniques for such systems have to
be able to describe all these aspects. Unfortunately, a single specification technique that is well
suited for all these aspects is yet not available. Instead one finds various specialised techniques
that are very good at describing individual aspects of system behaviour. This observation has
led to research into the combination and semantic integration of specification techniques. In
this paper we use the combination of three well researched specification techniques: CSP [6, 7],
Object-Z [13, 11] and Duration Calculus [14, 5].

The combination, CSP-OZ-DC, is applied to specify the case study of radio based railway
crossings [8]1. The main issue is that a train secures crossings and switches points via radio
based messages without going through a central signal box, see Fig. 1. In this paper we will
concentrate on the specification only. The purpose is to illustrate the powers of the combination
CSP-OZ-DC to specify complex systems.
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Fig. 1. Case study: Radio controlled railway crossings

The paper is organised as follows. Section 2 gives an introduction to the case study of radio
controlled railway crossing. Section 3 introduces the main constructs of CSP-OZ-DC with some
examples from the case study. Section 4 applies the new specification language to the case
study. Finally, we conclude with section 5.

⋆ This research is partially supported by the DFG under grant Ol/98-2.
1 This case study is part of the priority research program “Integration of specification techniques with applications in

engineering” of the German Research Council (DFG)
(http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/index.html).



2 Case Study

The main issue in the case study is to remotely operate points and crossings via radio based
communication while keeping the safety standard. Figure 2 surveys the controller architecture
we want to specify in this case study. The diagram shows several components connected by
communication channels. In the centre of the diagram is the train controller whose purposes
are to limit the speed of the train, decide when it is time to switch points and secure crossings,
and make sure that the train does not enter them too early.
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Fig. 2. Controller architecture

The odometer keeps track of the speed and position of the train. The position is measured by
various means, e. g. counting rotations of wheels. Distributed over the track, there are balises,
which are devices with a unique identifier that can be activated and read out by a passing
train. With the help of these balises the odometer can determine the absolute position of the
train. The speed controller supervises the speed and makes sure that it does not exceed the
limit set by the train controller, otherwise it automatically slows down the train. When the
speed limit is set to zero, the train will break until it comes to a safe halt. The communication
with crossings is done by the radio controller. As said above, the communication medium is
radio based. Special care has to be taken, because radio transmissions are inherently unsafe.
The safety must still be established under the assumption that no message can be transferred.

Most work is done by the train controller so in this paper we will concentrate on this
component. To specify this component several aspects must be handled, as described in the
following. The train controller communicates with other components, e. g. a radio controller,
that takes care of the radio protocol. Besides the communication aspects there are also data
aspects in the case study: The train controller maintains a representation of the track, the track
atlas. It further has to remember which crossings were notified and which are secure. Last but
not least there are also real-time aspects: The train must continuously supervise its maximum
speed. If it approaches a crossing it should secure it at the right moment, not too early and not
too late. It is also safety critical that it breaks in time if the booms of the crossing do not close.



Each of these aspects can be expressed in CSP, OZ or DC respectively. In the next section
we will introduce these languages and show in which way they are combined.

3 The Combination CSP-OZ-DC

In the last section we have seen that three aspects are important to specify the train controller.
The first aspect is communication. Most of the communications are initiated by the train
controller itself, e. g. the train controller decides when it is time to secure a track element. But
there are also communications initiated externally, e. g. the signal that is sent when a crossing
affirms that it is safe. These communications can be naturally modelled with CSP.

As an example we can model the loop supervising the speed in CSP by the following recursive
equation:

SuperviseSpeed
c

= getSpeed → getPos

→ calcMaxSpeed → setMaxSpeed → SuperviseSpeed

The symbol
c

= is used instead of an ordinary equals symbol to distinguish between CSP pro-
cess equations and Z equations. The process specifies that the four events getSpeed , getPos ,
calcMaxSpeed and setMaxSpeed are communicated in this order. Afterwards the process calls
itself again to allow for another cycle. For simplicity communication values are ignored here.
This process can work in parallel with other processes, which is noted in CSP like this:

main
c

= SuperviseSpeed || OtherParallelProcess

Besides communication there are data aspects in the train controller. The track atlas con-
tains a data base with the crossings and points. The train has to read this data base and also
need to keep its own data structures to remember which track elements have already been
switched and which have affirmed their safety. Specifying data structures and data bases is eas-
ily done with Object-Z (OZ). Starting from basic types Identifier and Position we can define
the track elements (crossings and points) by the Z schema.

TrackElement

id : Identifier

pos : Position

This schema declares a new data type TrackElement . Each element of this type consists of
several components listed inside the schema box. Each track element has a unique identifier id .
There is also a position associated with each track element, which is the position at which the
train must stop if it cannot secure it.

The track atlas contains information about track elements and the maximum speed for each
track segment. It is also represented by a Z schema as follows. The StaticProfile is for storing the
maximum speed and is not of interest here. The type seq TrackElement denotes finite sequences
of TrackElements.

TrackAtlas

staticprof : StaticProfile

elems : seq TrackElement



The data aspect has to interact with the communication aspect. The combination CSP-
OZ [2, 3] provides a simple mechanism to bind a communication to a OZ-schema describ-
ing the effect to the data base. The following schema connects an action with the (internal)
event clearDangerPosition. This event is not externally visible but is used to link the CSP
and OZ parts. Whenever this event is triggered by a CSP process a position should be re-
moved from the set of danger positions. This is done by writing a Z-schema with the name
com clearDangerPosition specifying the operation associated with that communication event.

com clearDangerPosition

∆(dangerPositions)
id? : Identifier

∃
1
elem : ran trackatlas.elems | elem.id = id? •

dangerPositions ′ = dangerPositions \ {elem.pos}

The ∆ in the first line of this schema declares that this operation changes dangerPositions .
The next line declares a parameter id , decorated with ? to signify that id is an input parameter.
Notice that this naming convention of Z corresponds nicely with the naming conventions of CSP:
the output of id along channel clearDangerPosition synchronises with the input of id in the Z
schema. In Z the transformation of a state is expressed by a relation between the state before
the operation and the state after the operation. The second state is distinguished from the first
one by decorating it with a prime. The predicate relating the two states is given below the
horizontal line. In this case we require that there is a track element elem with the identifier
id? and that its position elem.pos is removed from the set of danger positions. If there is no
element for that identifier the Z part blocks the communication.

To maintain safety, the train has to supervise the track repeatedly and must set the speed
limit in time. This requires real-time constraints. Another aspect where real-time is important is
the securing of crossings. If the train secures them too early, the traffic is unnecessarily blocked.
If the train secures them too late, there is not enough time to close the gate before the train
reaches the crossing.

For specifying real-time constrains, we use Duration Calculus (DC). As an example consider
the following DC formula which states that the next setMaxSpeed communication must occur
after at most one second:

⌈count(setMaxSpeed) = n⌉
1s

−→ ⌈count(setMaxSpeed) > n⌉

The brackets ⌈·⌉ express that the enclosed predicate should hold all over a given time interval.

A formula of the form P
t

−→ Q states that whenever we have a time interval of length t where
P holds it must be followed by an interval where Q holds. In DC all observations must have
a duration in order to be visible. CSP events, however, happen at a single point in time, so
we cannot observe them directly. Instead we count the number of times they did occur and
reason about these values. The above formula states that if the number of setMaxSpeed events
stays stable for one second, then the event has to occur afterwards so that count(setMaxSpeed)
increases.

The basic building block in our combined formalism CSP-OZ-DC is a class. Its syntax is
very similar to CSP-OZ [2, 3], only the DC part is new, see Fig. 3. First, the communication



TrackController

chan getPos : [p? : Position] . . . [interface channels]

local chan clearDangerPosition : [id? : Identifier ] [local channels]

main
c

= . . . [CSP part]

trackatlas : TrackAtlas [state space]

dangerPositions : P Position

Init

. . . [initial schema]

com clearDangerPosition

. . . [communication schemas]

⌈. . . ⌉
1s

−→ ⌈. . . ⌉ [DC part]

Fig. 3. Class in CSP-OZ-DC

channels of the class are declared. Every channel has a type which restricts the values that it
can communicate. There are also local channels that are visible only inside the class and that
are used by the CSP, Z, and DC parts for interaction. Second, the CSP part follows; it is given
by a system of (recursive) process equations. Third, the Z part is given which itself consists of
the state space, the Init schema and communication schemas. For each communication event a
corresponding communication schema specifies in which way the state should be changed when
the event occurs. Finally, below a horizontal line the DC part is stated.

Classes can be combined into larger specifications by CSP operators like parallel composi-
tion, hiding and renaming.

4 Applying CSP-OZ-DC to the Case Study

In Sect. 3 we have already introduced the case study of radio controlled railway crossing. In
this section we want to take a closer look at the train controller, especially how it calculates
the maximum speed. One central idea is the braking curve, see Fig. 4, which is a function that
gives for each position on the track the maximum admissible speed. The braking curve consists
of two parts: a static profile, a step function giving the admissible speed for each track segment,
and a dynamic profile which takes care of unsafe crossings and of the braking characteristics of
the train.

Before we go into the details of the braking curve, we first declare the basic data types in
our case study. Identifier and Direction are abstract types, Position and Speed are represented
by real numbers.

[Identifier ,Direction]
Position == R

Speed == R

StaticProfile == seq(Position × Speed)
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Fig. 4. Braking curve [4]

As said above the StaticProfile is a step function. It is represented here as a finite sequence of
speed changes, each consisting of a position and a corresponding maximum speed. After such
a change the speed remains constant until the position of the next change is reached.

For each crossing that has not affirmed its safety, a danger position in front of the crossing
is set and in the dynamic profile the corresponding position gets a maximum speed of zero.
To take care of the braking characteristic, there is a fixed function brakingDist that gives for
each speed the maximum distance the train needs to get to a safe halt. In Z this is a monotone
function from speed to position (distance).

brakingDist : Speed → Position

∀ s , s ′ : Speed | s ≤ s ′ • brakingDist(s) ≤ brakingDist(s ′)

With this function it is possible to calculate the dynamic profile. It is specified as a function
calcProfile taking a static profile and a set of danger positions as arguments and returning the
dynamic speed profile as a function from position to maximum admissible speed.

calcProfile : StaticProfile × P Position → (Position → Speed)

To keep a record of the track elements to which we already sent the setting command,
we need another set notifiedElements . As soon as we choose to notify an element we add its
identifier to this set.

notifiedElems : P Identifier

In Sect. 3 we have already introduced TrackElement and TrackAtlas. Here we give the full
definition. A track element has a unique identifier id and can be either a crossing or a point.
The associated danger position is stored in pos . The component setpos gives the position where
the train should send the set command. The last field dir is only meaningful for points and
specifies the direction in which it should be switched.



TrackElement

id : Identifier

type : {crossing , point}
pos : Position

setpos : Position

dir : Direction

The track atlas contains the static profile as well as a sequence of track elements.

TrackAtlas

staticprof : StaticProfile

elems : seq TrackElement

Using these types we now specify the TrainController as a CSP-OZ-DC class. The ex-
ternal interface of this class was already depicted in Fig. 2. Notice, however, that here the
values communicated over these channels are specified using Z schema types. The local chan-
nels clearDangerPosition, insecureTrackElement and calcMaxSpeed are internal communication
channels used to link the CSP and Z part. The event setDangerPosition is triggered by the DC
part and received by the Z part.

TrainController

chan getPos : [p? : Position]; getSpeed : [s? : Speed ]
chan setMaxSpeed : [s ! : Speed ]
chan setTrackElement : [id ! : Identifier ; dir ! : Direction]
chan securedTrackElement : [id? : Identifier ]
local chan insecureTrackElement : [id : Identifier ]
local chan setDangerPosition, clearDangerPosition : [id : Identifier ]
local chan calcMaxSpeed : [maxs : Speed ]

main
c

= SuperviseSpeed || SecuredNotifier || SuperviseTrack

SuperviseSpeed
c

= getSpeed?speed → getPos?pos
→ calcMaxSpeed?maxs

→ setMaxSpeed !maxs → SuperviseSpeed

SecuredNotifier
c

= securedTrackElement?id
→ clearDangerPosition!id → SecuredNotifier

SuperviseTrack
c

= insecureTrackElement?id
→ setTrackElement !id?dir → SuperviseTrack

The CSP process SuperviseSpeed already occurred in Sect. 3, but here we also show the com-
municated data. There are two other CSP processes running in parallel. One is SecuredNotifier ,
which handles the secured signal received by the radio controller and clears the associated dan-
ger position. The other is SuperviseTrack , which decides which track element should be secured
and sends the setting command.

The next part of the TrainController class is its state space. It consists of several compo-
nents, which were already introduced before. The variables position and speed always hold the
last position and speed, that were queried from the Odometer. The dynamic Profile dynProf

is special, because it is calculated from the other state variables and this is represented by



the formula in the state schema below the horizontal line. This formula is also called a class

invariant.

trackatlas : TrackAtlas

dangerPositions : P Position

dynProf : Position → Speed

notifiedElems : P Identifier

position : Position

speed : Speed

dynProf = calcProfile(trackatlas.staticprof , dangerPositions)

Init

dangerPositions = {elem : ran trackatlas.elems • elem.pos}

Everytime we query the speed or position from the odometer the corresponding variables
in the state space are automatically updated. This is easily modelled here by communication
schemas. Notice that position ′ denotes the new value of the variable position, while its old value
position is ignored.

com getPosition

∆(position)
pos? : Position

position ′ = pos?

com getSpeed

∆(speed)
speed? : Speed

speed ′ = speed?

The operations setDangerPosition and clearDangerPosition update the set of danger posi-
tions. The only difficulty here is that they both take an id as input, while dangerPositions is
a set of positions. So this schema has to use the trackatlas to look up the track element record
by its id . Notice that this schema only sets the new value of dangerPositions , but implicitly
dynProf also gets a new value through the state invariant.

com setDangerPosition

∆(dangerPositions , dynProf )
id? : Identifier

∃ elem : ran trackatlas.elems | elem.id = id? •
dangerPositions ′ = dangerPositions ∪ {elem.pos}

com clearDangerPosition

∆(dangerPositions , dynProf )
id? : Identifier

∃ elem : ran trackatlas.elems | elem.id = id? •
dangerPositions ′ = dangerPositions \ {elem.pos}

The operation insecureTrackElement selects a track element from the track atlas that should
be immediately notified. The CSP part will then call setTrackElement for the chosen element,



but the OZ part has to deliver the direction argument dir , which the CSP part does not know.
In the DC part of the class we make sure that these two operations get executed whenever
there is a track element that should be notified.

com insecureTrackElement

∆(notifiedElements)
id ! : identifier

∃ toNotify : {elem : ran trackatlas.elems | elem.id 6∈ notifiedElements

∧ elem.setpos ≤ position} • id ! = toNotify .id

notifiedElements ′ = notifiedElements ∪ id !

com setTrackElement

id? : Identifier

dir ! : direction

dir ! = µ elem : trackAtlas.elems | elem.id = id ! • elem.dir

The operation calcMaxSpeed basically looks up the maximum speed for the current position
in the dynamic speed profile. But to make the train controller safe it must look a short time
into the future. This is done by reactDistance, which returns the maximum distance the train
can pass within its reaction time. We do not give a definition for this function here.

com calcMaxSpeed

maxs ! : Speed

let endp == position + reactDistance(speed) •
maxs ! = min dynProf (| [position, endp] |)

⌈count(setMaxSpeed) = n⌉
1s
−→ ⌈count(setMaxSpeed) > n⌉

⌈enabled(insecureTrackElement) ∧ count(insecureTrackElement) = n⌉
100ms

−→ ⌈count(insecureTrackElement) > n⌉
⌈enabled(setTrackElement) ∧ count(setTrackElement) = n⌉

100ms

−→ ⌈count(setTrackElement) > n⌉
⌈enabled(clearDangerPosition) ∧ count(clearDangerPosition) = n⌉

100ms

−→ ⌈count(clearDangerPosition) > n⌉
⌈count(setTrackElement .id) = n⌉; ⌈count(setTrackElement .id) > n

∧ count(setDangerPosition.id) = m⌉
300s
−→ ⌈count(setDangerPosition.id) > m⌉

The first DC formula was already presented in Sect. 3. The second DC formula gives an example
of the enabled predicate. The operation insecureTrackElement is enabled by the OZ part when
its precondition is true which means that there exists a track element to be notified. Whenever
it is enabled the event should be triggered after 100ms . The third formula is similar, but here
the enabled predicate is true whenever the CSP part is ready to execute the event, i.e. when
insecureTrackElement was just triggered. The fourth is an analogous formula and makes sure
that clearDangerPosition is executed shortly after the securedTrackElement was received.

The last DC formula specifies that the danger position for a secured track element should
be set again five minutes after the setTrackElement event was issued. Normally the train should



have passed the corresponding track element by that time, otherwise the train must consider
it as unsafe again.

The overall specification of the control system is given by the parallel composition of the
classes corresponding to Fig. 2, of which we have exhibited the class TrainController :

Spec = TrainController ‖ RadioController ‖ Odometer ‖ SpeedController

5 Conclusion

One of our guidelines for combining specification techniques is refinement compositionality, i.e.
refinement of the parts should imply refinement of the whole. For example, our specification of
the case study makes use of intervals and functions over the real numbers, so it is not directly
implementable. It is possible though, to refine the data part with a Z refinement to get only
primitive types and sequences. For the untimed combination CSP-OZ Fischer [3] has proven
data refinement in OZ indeed implies process refinement of the whole CSP-OZ class.

Related work. Closest to our approach is Real-Time Object-Z [12]. Classes in this combi-
nation look similar to ours but lack the CSP and DC part. Another related work is TCOZ,
a combination of Timed CSP [1] with Object-Z [9, 10]. Obviously, DC is not involved in this
combination. So the constructs of Timed CSP are used to specify time dependencies between
communications.

Perspectives. Future work will explore transformations for restructuring and refining specifi-
cations of the combined language and tool support. We can of course reuse the support available
for the individual techniques due to refinement compositionality. However, a topic of ongoing
research are verification techniques for properties of the combination.
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