
Splitting via Interpolants?

Evren Ermis, Jochen Hoenicke, and Andreas Podelski

University of Freiburg
{ermis,hoenicke,podelski}@informatik.uni-freiburg.de

Abstract. A common problem in software model checking is the au-
tomatic computation of accurate loop invariants. Loop invariants can
be derived from interpolants for every path leading through the corre-
sponding loop header. However, in practice, the consideration of single
paths often leads to very path specific interpolants. Inductive invariants
can only be derived after several iterations by also taking previous inter-
polants into account.

In this paper, we introduce a software model checking approach that uses
the concept of path insensitive interpolation to compute loop invariants.
In contrast to current approaches, path insensitive interpolation sum-
marizes several paths through a program location instead of one. As a
consequence, it takes the abstraction refinement considerably less effort
to obtain an adequate interpolant. First experiments show the potential
of our approach.

1 Introduction

In software model checking, abstraction refinement is used to prove properties
of a system on an abstract model without actually expanding this model to the
state level. The challenge when refining is to modify the abstract model in a way
that the desired property can be shown before the model becomes prohibitively
large. This can be achieved by extending the model with computed invariants.
The use of Craig interpolants is one promising approach for this purpose [15].
However, interpolation on single paths computes path specific interpolants. In
order to find an accurate invariant the desired interpolant must be inductive.
Current interpolation-based approaches find an interpolant for each infeasible
error path separately. These interpolants can be combined into a single inductive
invariant for all paths.

We introduce the concept of path insensitive interpolation as a technique to
derive inductive interpolants more directly. The idea is to put more information
into the interpolation process by considering several paths through the observed
location. Thus, we are more likely to obtain an inductive invariant for this loca-
tion. We present a novel software model checking approach that combines path
insensitive interpolation with splitting as abstraction refinement.

? A preliminary version appeared as UNU-IIST, Macau, Technical Report 449, June
2011

This is the author’s version of the work published in Verification, Model
Checking, and Abstract Interpretation (VMCAI 2012), LNCS 7148,
pages 186–201. Springer, 2012. The orginal publication is available at
www.springerlink.com/index/10.1007/978-3-642-27940-9_13

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski
http://www.springerlink.com/index/10.1007/978-3-642-27940-9_13
http://dx.doi.org/10.1007/978-3-642-27940-9_13

2 Evren Ermis, Jochen Hoenicke, and Andreas Podelski

Splitting separates the states along an infeasible path to those reachable
from the initial location and those leading to the erroneous location. The refined
model can contain several nodes representing the same location of the original
program. Each node carries an invariant that characterizes a set of states. Using
splitting as refinement step has the benefit, that the loop invariant does not have
to be derived as a single inductive interpolant. It can be constructed as a union
of all interpolants. The main task is to find useful interpolants.

Path insensitive interpolation returns an interpolant for a location ` consid-
ering several paths through `. If in the extreme case all possible paths through `
are considered, the interpolant is guaranteed to be the right inductive invariant
for `. If loops are present this is not possible, but one can still merge loop-free
paths through ` to get an interpolant that holds for all the considered paths.
This interpolant will be an inductive invariant for this location ` for the loop-free
subprogram considered. In a first approach our algorithm collapses non-looping
subprograms into single transitions using large-block encoding (LBE) [4]. In the
resulting graph, each path corresponds to a set of original program paths. On this
compressed model we can compute path interpolants [16]. Thus, we can derive
interpolants from the refutation of sets of paths rather than single paths. This
approach allows to compute interpolants that are path insensitive modulo the
loop iterations of the program. E.g. programs with multiple outer loops cannot
be compressed by LBE to achieve path insensitive interpolation but our results
show that partial path insensitivity still works efficiently. It helps to reduce the
number of splits needed to an extent that our algorithm can efficiently handle
programs of a realistic size.

In the following, we illustrate our model checking approach using an example
in Section 2. In Section 3 we introduce the basic definitions for technical Sec-
tion 4. In Section 4 we present our interpolation-based model checking approach.
An experimental evaluation of the approach is given in Section 5.

2 Example

We will illustrate the approach by applying it to program main (Fig. 1). The
program has non-deterministic branches. The sum of x, y, and z is equal to the
initial value n in each iteration of the loop. Consequently, the assertion n = y+z
holds when the loop exits with x = 0. The program has the corresponding
program graph P (Fig. 2).

Our approach uses splitting as refinement step. The path interpolants [16]
derived from infeasible error paths are used as splitting criteria. An error path is
encoded as a FOL formula and passed to the interpolating SMT solver. Our ap-
proach compresses paths in the model by applying large block encoding (LBE).
LBE compresses loop-free subgraphs to single edges. Hence, checking one path
in the compressed model covers multiple paths in the original program graph.
The effect is that the obtained interpolants are at least partially path insensi-
tive. LBE iteratively (1) compresses sequential nodes to single edges by using
conjunctions and (2) merges multiple edges by using disjunctions. Via the intro-

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski

Splitting via Interpolants 3

1 procedure main () {
2 var x , y , z , n : int ;
3 assume (n == x && y == 0 && z == 0) ;
4 while (x != 0) {
5 i f (∗) {
6 x := x + 1 ;
7 y := y − 1 ;
8 }
9 i f (∗) {

10 y := y + 1 ;
11 z := z − 1 ;
12 }
13 i f (∗) {
14 x := x − 1 ;
15 z := z + 1 ;
16 }
17 }
18 a s s e r t (n == y + z) ;
19 }

Fig. 1. Code of program main. Non-deterministically increments one variable whilst
decrementing a second variable. The program is safe if the assertion (Line 18) holds on
every execution.

duced disjunctions the decision of the branching is shifted to the interpolating
SMT solver. The edges of the compressed model represent contiguous loop-free
code segments.

`init `0 `1 `2

`err

`4 `5

`6

`7 `8

`9

`10 `11

`12
n′ = x∧
y′ = 0∧
z′ = 0

x 6= 0

x = 0 ∧ n 6= y + z

x′ = x+ 1

y′ = y − 1

y′ = y + 1

z′ = z − 1

z′ = z + 1

x′ = x− 1

Fig. 2. Program graph P of main (Fig. 1). Edges without labeling carry the formula
>. `err ’s guard is the negated assertion (Fig. 1, Line 18). `1 represents the loop head
(Fig. 1, Line 4). `6, `9 and `12 are nodes that will have entering multiple edges because
of the preceding branches.

4 Evren Ermis, Jochen Hoenicke, and Andreas Podelski

`init

`1 `err

n′ = x ∧ y′ = 0 ∧ z′ = 0

x = 0 ∧ n 6= y + z

∃x′′, y′′, z′′ : ((x 6= 0) ∧
((x′′ = x ∧ y′′ = y) ∨ (x′′ = x+ 1 ∧ y′′ = y − 1)) ∧
((y′ = y′′ ∧ z′′ = z) ∨ (y′ = y′′ + 1 ∧ z′′ = z − 1)) ∧

((z′ = z′′ ∧ x′ = x′′) ∨ (z′ = z′′ + 1 ∧ x′ = x′′ − 1)))

Fig. 3. The resulting model after compressing P (Fig. 2). The entire body of the loop
is encoded in a single edge. Only the loop header (Fig. 1, Line 4) cannot be reduced
any further.

Sequential nodes `i and `i+1 are compressed, if `i is the only predecessor of
`i+1 and they’re connected by a single transition (Dotted nodes (Fig. 2)). E. g.,
x′ = x + 1 ∧ y′ = y − 1 encodes the then-branch of the conditional branching
in line 5 (Fig. 1). If a variable is changed in both transition, we introduce new
auxiliary variable (e. g., y′′) for the intermediate value. An alternative would be
to use single static assignment (SSA).

Multiple edges occur if the original program has conditional branchings. The
branchings are merged by joining the formulas with a disjunction. If the branches
disagree on the changed variable they have to be adapted to each other by
inserting frame conditions, e. g., the first else-branch from `2 to `6 is changed
to x′ = x ∧ y′ = y. In our example (Fig. 3) the disjunctions encode the three
conditional branchings at Line 5, 9, and 13 (Fig. 1). LBE provides a partially
path insensitive observation of locations and their interpolants. In Figure 3 the
shortest error path through `1 has the corresponding FOL formula

`init → `1 ∃x, y′′′, z′′′, n′ : ((n′ = x ∧ y′′′ = 0 ∧ z′′′ = 0)∧

`1 → `1

∃x′′, y′′, z′′ : ((x 6= 0) ∧

((x′′ = x ∧ y′′ = y′′′) ∨ (x′′ = x+ 1 ∧ y′′ = y′′′ − 1)) ∧
((y′ = y′′ ∧ z′′ = z′′′) ∨ (y′ = y′′ + 1 ∧ z′′ = z′′′ − 1)) ∧
((z′ = z′′ ∧ x′ = x′′) ∨ (z′ = z′′ + 1 ∧ x′ = x′′ − 1)))

∧
`1 → `err (x′ = 0 ∧ n′ 6= y′ + z′))

The solver returns either a configuration that proves the feasibility of the error
path or an array of interpolants [16]. Each interpolant corresponds to a location
but is not bound to a single execution path. It rather summarizes a set of ex-
ecution paths through this location. This way we get partial path insensitivity.
It is partial because it summarizes all paths through `1 modulo the loop iter-
ations. If the path is feasible, the program is unsafe. If it is not feasible, the
interpolants are used to split the path (Fig. 4). The returned interpolant Ii (e.g.
(n = x) ∧ (y = 0) ∧ (z = 0), Fig. 4) is appended to the corresponding node
`i+1(`1, Fig. 4). Its negation is appended to the split node `′i+1. `′i+1 inherits

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski

Splitting via Interpolants 5

all incoming and outgoing edges of `i+1. Infeasible edges of `i+1 and `′i+1 are
removed from the model (dotted edges, Fig. 4).

`init

`1:n = x ∧ y = 0 ∧ z = 0 `11:¬(n = x ∧ y = 0 ∧ z = 0)

`err

n′ = x ∧ y′ = 0 ∧ z′ = 0

n′ = x ∧ y′ = 0 ∧ z′ = 0

φloopφloop

φloop

x = 0 ∧ n 6= y + z

x = 0 ∧ n 6= y + z

φloop φloop

Fig. 4. Model after splitting the error path. The control flow is partitioned by ap-
pending the interpolant n = x ∧ y = 0 ∧ z = 0 to `1 and its negation to `11. The label
φloop denotes the formula on the loop edge of Figure 3. Dotted edges are infeasible and
will be removed.

In the next iteration we take the error path `init , `1, `
1
1, `err . The edge from

`1 to `11 is annotated with the disjunction from the edge `1 to `1 in the previous
graph. Due to this disjunction the interpolant generator has to find an interpolant
that works for all branches through the if statements. This will most probably
result in the interpolant n = x + y + z, which is then used to split `11 (Fig. 5).
Node `1 is not split, since its interpolants is true. The subsequent feasibility
check of the edges renders the subgraph, consisting of `21 and `err , unreachable
from `init . Hence after removing the infeasible edges, our model does not contain
any error paths. The algorithm stops and has proven the safety of the program
main by deriving the loop invariant.

3 Preliminaries

A program is represented by a program graph P := (Loc, `init , `err , δ) where Loc
is a finite set of control locations, `init ∈ Loc is the initial location, `err ∈ Loc
is the error location. The relation δ describes how control passes from one lo-
cation to another and forms a directed graph. An edge (`, ϕ, `′) ∈ δ is labeled
with a transition formula ϕ. A transition formula is a formula over unprimed
and primed program variables V and V ′ (see e.g., [15]). We think of a transition
formula as representing a set of pairs of states (s, s′), s.t. (s, s′) |= ϕ. For brevity
of exposure, we assume that transition formulas are formulas over all unprimed
and primed program variables. This assumption is lifted in practice by introduc-
ing a frame condition like x = x′ only when necessary, i. e., when computing the
disjunction with a formula that changes x. A path in a program graph P from
a location `0 to a location `n+1 is an alternating sequence of locations and tran-
sition formulas π = `0ϕ0`1ϕ1 . . . `nϕn`n+1 where (`i, ϕi, `i+1) ∈ δ for 0 ≤ i ≤ n.

6 Evren Ermis, Jochen Hoenicke, and Andreas Podelski

`init

`1:n = x ∧ y = 0 ∧ z = 0 `11:
¬(n = x ∧ y = 0 ∧ z = 0) ∧

(n = x+ y + z)

`21:
¬(n = x ∧ y = 0 ∧ z = 0) ∧

¬(n = x+ y + z)
`err

n′ = x ∧ y′ = 0 ∧ z′ = 0
φloop

φloop
φloopφloop

φloop φloop

φloop

x = 0 ∧ n 6= y + z

x = 0 ∧ n 6= y + z

Fig. 5. Final model that proves the safety of program main. The highlighted interpolant
is a loop invariant. The edges leading to subgraph (`21,`err) are infeasible.

A path from the initial location `init to the error location `err is called error
path. We extend the concept of transition formulas from edges to paths as fol-
lows: given a path π = `1ϕ1`2ϕ2`3, where both ϕ1 and ϕ2 are formulas over the
unprimed and primed variables V = {v0, . . . , vn} and V ′ = {v′0, . . . , v′n}. The
path formula ϕ(π) is the sequential composition ϕ1 ◦ ϕ2, such that

∃v′′1 , . . . , v′′n : ϕ1[v′′0/v
′
0 . . . v

′′
n/v
′
n] ∧ ϕ2[v′′0/v0 . . . v

′′
n/vn]

and ϕ(π) is a formula over the unprimed and primed program variables.

Infeasibility and Interpolants. An error path in the program graph must not nec-
essarily correspond to a real error. There may be no valuations for the program
variables for which the transition formula is satisfied. We call paths that have
an unsatisfiable transition formula infeasible.

Definition 1. A path π = `0ϕ0`1 . . . `nϕn`n+1 in a program P is infeasible if
and only if its path formula ϕ(π) := ϕ0 ◦ . . . ◦ ϕn is unsatisfiable.

That is, the path π is infeasible if, for any valuation of the unprimed variables
V , there is no valuation of V ′, s.t. ϕ(π) is satisfied. In particular, a location is
unreachable if any path from `init to this location is infeasible. The program
graph is safe if the error location `err is unreachable:

Definition 2. A program graph P is safe if and only if every error path is
infeasible.

For an infeasible error path we can compute Craig interpolants that separate
the states reachable from the initial location from the states that can reach the
error location on this path. We compute one interpolant for every location on
the error path, using the following definition of interpolants for a path formula.

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski

Splitting via Interpolants 7

Definition 3. Given an unsatisfiable formula ϕ0 ◦ · · · ◦ ϕn where ϕi is a tran-
sition formula over V and V ′, the sequence I1, . . . , In of formulas over V is an
inductive sequence of interpolants if the formulas

ϕ0 ◦ ¬I1, Ii ∧ ϕi ◦ ¬Ii+1 for 1 ≤ i < n, In ∧ ϕn

are all unsatisfiable.

The Ii can be computed step by step as the Craig interpolant of the formulas
(∃v1 . . . vn.Ii−1 ∧ϕi−1)[v1/v

′
1 . . . vn/v

′
n] and ϕi ◦ · · · ◦ϕn (using I0 = true). Note

that the formulas contain only existential quantifiers provided that ϕi is quan-
tifier free. Hence, the quantifiers can be removed by skolemization and we can
use interpolation algorithms for quantifier-free logics.

4 Splitting via Path Insensitive Interpolants

4.1 Underlying Splitting Algorithm

Our model checking algorithm given by Algorithm 1 takes a program graph P as
input and returns safe, if no error location can be reached, unsafe, if a feasible
error path is found.

Our algorithm is based on abstraction refinement. An abstract state of the
program is a tuple (`, Inv) where ` is a program location and Inv a formula over
the program variables. It represents the concrete states of the program where the
program counter is in location ` and program variables fulfill the formula Inv.
The initial abstraction is given by the program graph where each node is addi-
tionally labeled with the invariant true represents the initial abstraction. I. e.,
all program states that have the same location are combined into one abstract
state. A refinement step splits an abstract state by a formula into those states
that satisfy the formula and those that do not. The formulas are interpolants
computed from an infeasible error path. After each split, there is a slicing step
that removes all edges from the program graph that are no longer feasible.

Due to the splitting step, we will have several abstract states (we call them
nodes) representing the same location, each associated with a different formula
(invariant). In the abstract transition system, a path is feasible if there is a
sequence of program variable valuations that satisfies the transition constraints
and the invariants labeled to each state. Thus the path formula for a path π =
(`0, Inv0)ϕ0(`1, Inv1) . . . ϕn(`n+1, Invn+1) is augmented by the node invariants:

ϕ(π) := Inv0 ∧ ϕ0 ◦ Inv1 ∧ ϕ1 ◦ . . . ◦ ϕn ◦ Invn+1 .

We define correctness for a abstract transition systems exactly as for program
graphs, i. e., the labeled program graph is safe if for all error paths π the path
formula ϕ(π) is unsatisfiable. It is obvious that the program graph is safe if
and only if the initial abstract transition system is safe where each location ` is
replaced with the node (`, true).

8 Evren Ermis, Jochen Hoenicke, and Andreas Podelski

The outer loop of the algorithm repeatedly checks if there exists an error
path π in P. If not, the algorithm terminates and returns that P is safe. Oth-
erwise we check whether π is feasible using the procedure satisfiable. This
procedure checks the satisfiability of the path formula ϕ(π). The procedure is
implemented by an interpolating theorem prover. If the prover determines that
the formula is satisfiable, i. e., the error path π is feasible, our algorithm returns
unsafe because π is a counterexample that witnesses the reachability of the error
location in P. Otherwise the error path is infeasible and our algorithm computes
a sequence of interpolants I1, . . . , In for π using the procedure Interpolants

(e.g.,[16]). The procedure Interpolants returns one interpolant for each loca-
tion `i on the path π. We use I1, . . . , In to split the nodes into states that cannot
reach the error location following the path π and states that cannot be reached
from the initial location on π. The next step is called slicing and removes all
edges ((`, Inv), ϕ, (`′, Inv′)) that are not feasible in every path π because their
transition constraint ϕ is incompatible with Inv and Inv′.

Algorithm 1: Model checker algorithm

Data: P = (Loc, `init , `err , δ);
Map Inv from Loc to formulas;
Result: Safe, Unsafe, or Unknown.

1 begin
2 foreach `i in P do
3 Replace `i with (`i, true)

4 while exists an error path π in P do
5 switch satisfiable(ϕ(π)) do
6 case sat: return unsafe;
7 case unsat:
8 I1, . . . , In := Interpolants(π);
9 foreach (`i, Invi) in π do

10 Split (`i, Invi) into (`i, Invi ∧ Ii), (`i, Invi ∧ ¬Ii);
11 Slice (P);

12 otherwise return unknown;

13 return safe;

Splitting. The function Split in line 10 duplicates the node (`, Inv) and aug-
ments the labeling of one copy with I and the labeling of the other copy with
¬I, see Fig. 6. When the node is duplicated, all incoming and all outgoing edges
are duplicated as well. For the loop edge that is both incoming and outgoing we
create four new edges.

Lemma 1. Splitting a location does not change the set of feasible paths (except
for annotating a different invariant). The resulting abstract transition system is

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski

Splitting via Interpolants 9

· · ·

· · ·

(`, Inv)

· · ·

· · ·

ϕ1 ϕi

ϕ

ϕj ϕn

· · ·

(`, Inv ∧ ¬I)(`, Inv ∧ I)

· · ·

ϕ1 ϕi

ϕ

ϕj ϕn
ϕ

ϕ
ϕ1 ϕi

ϕ

ϕj ϕn

Fig. 6. Splitting the node ` on the formula I in a labeled program graph. The node
and its incoming and outgoing edges are duplicated and one copy of the node is labeled
with I and the other with ¬I.

correct if and only if the input system is correct and it has the same feasible
error paths.

Proof. The second statement is a direct consequence of the first statement. To
prove the first statement, consider a feasible path of the original program graph
visiting location ` once:

π = (`0, Inv0)ϕ0(`1, Inv1) . . . (`, Inv) . . . ϕn(`n+1, Invn+1).

Since π is feasible its path formula

π(φ) = Inv0 ∧ ϕ0 ◦ . . . Inv ∧ φi ◦ . . . ϕn ◦ Invn+1

is satisfiable. By definition of ◦, there exists a valuation of variables for location
` satisfying Inv. Obviously this valuation must satisfy either I or ¬I. Hence
either F = I or F = ¬I is satisfied and the path

π = (`0, Inv0)ϕ0(`1, Inv1) . . . (`, Inv ∧ F) . . . ϕn(`n+1, Invn+1)

is feasible (with the same valuation). The argument can be inductively extended
to paths visiting the location more than once (each time a different (`, Inv ∧F)
may be visited). ut

Slicing. In the slicing step the labeled program graph is simplified by removing
infeasible edges. An edge ((`, Inv), ϕ, (`′, Inv′)) is infeasible if the formula Inv∧
ϕ ◦ Inv′ is unsatisfiable. Since this formula is a part of every path formula
containing the edge, every path containing an infeasible edge is infeasible. Thus,
removing the edge does not change the set of feasible paths. Removing edges may
render subgraphs of the program graph unreachable. All unreachable edges and
locations are also removed without affecting the feasible paths of the program.

Lemma 2. The slicing operation preserves all feasible error paths in the abstract
transition system and its correctness.

Proof. As sketched above, slicing does not change the feasible paths and hence
the feasible error paths.

10 Evren Ermis, Jochen Hoenicke, and Andreas Podelski

Soundness and Progress. Using the above lemmas, we can immediately prove
soundness of our algorithm:

Theorem 1 (Soundness). The application of splitting and slicing on a pro-
gram graph P as performed by Algorithm 1 preserves all feasible error paths in
P. Hence, if the algorithm returns safe the original program graph has no feasible
error path and if the algorithm returns unsafe the feasible error path found by
the algorithm is also present in the original program graph.

Proof. By Lemma 1 and Lemma 2.

Provided that the transition formulas ϕ in the program graph are from a de-
cidable theory and that the interpolants are given in the same theory, the SMT
solver will always terminate and return either sat or unsat. There are several
decidable theories for which interpolation is possible, e. g., quantifier free formu-
las over linear arithmetic and uninterpreted functions. For the theory of arrays
there exist decidable fragments, e. g., [7]. Recently there has also been work on
a decidable fragment closed under interpolation [9].

If we use a decidable and interpolating theory, our algorithm will never ter-
minate with unknown. Since the software model checking problem is undecidable
(even for simple integer programs using only linear arithmetic), it is clear that
our algorithm does not always terminate. However, we can show a progress prop-
erty:

Theorem 2 (Progress). In each loop iteration our algorithm will exclude one
infeasible error path from the program.

Proof. Let I1, . . . , In be the interpolants for the infeasible error path

π = (`init , Invinit)ϕ0(`1, Inv1) . . . ϕn(`err , Inverr).

By the definition of interpolants we know that the formulas

Invinit ∧ ϕ0 ◦ ¬I1, Ii ∧ Invi ∧ ϕi ◦ ¬Ii+1, In ∧ Invn ∧ ϕn ◦ Inverr

are unsatisfiable. After splitting, the edge ϕ0 from (`init , Invinit) to (`1, Inv1 ∧
¬I1), the edges ϕi from (`i, Invi ∧ Ii) to (`i+1, Invi+1 ∧¬Ii+1) (1 ≤ i < n), and
the edge ϕn from (`nInvn ∧ In) to (`err , Inverr) are infeasible and thus removed
in the slicing step. Thus after slicing, the nodes (`i, Invi∧¬Ii) and (`err , Inverr)
are not reachable on the path π. This shows that error path π is not present in
the resulting program graph any more. ut

4.2 Path Insensitive Interpolation

In this section, we will present a first approach to apply path insensitive inter-
polation. Path insensitive interpolation finds an interpolant I for a location ` that
holds for any infeasible error path π = (`init, Invinit) . . . (`, Inv) . . . (`err, Inverr).
Therefore the interpolant I is not just a summary in the context of a single path
but insensitively of any path.

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski

Splitting via Interpolants 11

Definition 4. Given a program graph P = (Loc, `init , `err , δ). For any location
` ∈ Loc \ {`init , `err , }, there exists a set Π` of all error paths

πi = (`init, Invinit) . . . (`
i
n−1, Inv

i
n−1), (`, Inv), (`in+1, Inv

i
n+1) . . . (`err, Inverr).

If there exists an interpolant I , s.t.

ϕ((`init, Invinit) . . . (`
i
n−1, Inv

i
n−1))⇒ I

holds and
ϕ((`in+1, Inv

i
n+1) . . . (`err, Inverr)) ∧ I

is unsatisfiable for every πi ∈ Π` then I is a path insensitive interpolant of ` in
P.

To enforce path insensitive interpolants we use a method to simplify the program
graph without changing its correctness and without loosing information about
its structure. We will first sketch the method for loop free program graphs and
then generalize it. Given a program graph without loops, there are only finitely
many error paths whose infeasibility can be checked by a theorem prover call
for every path. However, the number of paths may be exponential in the num-
ber of program transitions. A better way to check correctness is to encode the
branching structure in the formula by using disjunction. Given a location ` with
outgoing edges ((`, Inv), ϕ1, (`1, Inv1)), . . . , ((`, Inv), ϕn, (`n, Invn)) we can de-
fine its error transition formula describing all paths from ` to `err by

err ↔ (ϕ1 ◦ err1) ∨ · · · ∨ (ϕn ◦ errn).

The symbols err i for the other locations are similarly defined. This is only well
defined for loop-free code; otherwise the definition would be cyclic. We can then
check the satisfiability of err init in conjunction using the above definition (the
symbols err i are boolean variables). This trick will move the burden of enumer-
ating the error paths to the theorem prover. Moreover, the theorem prover can
use its advanced techniques to avoid the exponential blow-up. Modern static
checkers are based on this method [3]. For program graphs containing loops,
one cannot encode the disjunction of the path formulas of all error path by a
single (quantifier-free) transition formula. However, at least the loop-free frag-
ments of the program graph can be transformed into a single transition formula.
One way to achieve this is by large-block encoding [4]. The resulting program
graph is much smaller and contains basically one location for every loop-header.
But LBE does not give us the desired full path insensitivity. It is rather a par-
tial path insensitivity. Partial path insensitivity does not consider all execution
paths through a location but a sub set. Especially for loops, it is intuitively
clear that it is not possible to consider all execution paths through the loop
header since we cannot encode all iteration of the loop. Besides being smaller,
another advantage of large block encoding is that only the program states at
the beginning of a loop need to be considered in the model checking process.
Thus we concentrate on finding loop invariants instead of looking at every single

12 Evren Ermis, Jochen Hoenicke, and Andreas Podelski

computation step of the program. Moreover, the interpolating theorem prover
looks at several parallel paths in the program at once. Thus it can output more
informed interpolants that are more likely to capture the inductive invariant of
the program, than if every path is considered separately. We fold each loop-free

Transformation 1: (`, Inv)

(`′, Inv′)

· · ·
(`1, Inv1) · · · (`n, Invn)

ϕ

ϕ1 ϕn

(`, Inv)

· · ·

(`1, Inv1) · · · (`n, Invn)

ϕ ◦ Inv′ ∧ ϕ1 ϕ ◦ Inv′ ∧ ϕn

Transformation 2: (`, Inv)

(`′, Inv′)

. . .ϕ1 ϕn

(`, Inv)

(`′, Inv′)

ϕ1 ∨ · · · ∨ ϕn

Fig. 7. The reduction rules for simplifying the program graph. Our implementation of
large-block encoding follows closely [4]. Transformation 1 uses sequential composition
to remove intermediate locations and Transformation 2 uses disjunction to remove
multiple edges resulting from branches in the original program graph.

subgraph in a program P to a single edge using the fix-point application of se-
quential and disjunctive composition of edges. We express this using the two
transformation rules given in Figure 7. The first rule compresses sequential code
into a single edge by sequentially composing the edge labels. It is applicable if
there is a location `′ with a single incoming edge. The transition formula of the
incoming edge is composed with every transition formula on all outgoing edges
to create new outgoing edges from the predecessor. The location `′ and all its
incoming and outgoing edges are then removed.

Transformation 1 Given a program graph P = (Loc, `init , `err , δ). For any
location `′ ∈ Loc\{`init , `err}, s.t. the edge ((`, Inv), ϕ, (`′, Inv′)) exists uniquely,
we reduce the program graph P as follows: 1) remove the location `′ from Loc,
and 2) replace all pairs of edges ((`, Inv), ϕ, (`′, Inv′)), ((`′, Inv′), ϕ′, (`′′, Inv′′))
by a new edge ((`, Inv), ϕ ◦ Inv′ ∧ ϕ′, (`′′, Inv′′)).

Note that the rule duplicates the formulas ϕ and Inv′ for every outgoing edge of
location `′. We can avoid exponential blow-up by replacing them by a boolean
variable which are defined as ϕ resp. Inv′, the same way we defined the variables
err above.

After applying Transformation 1, each location in the program graph P is
either a sink or has more than one outgoing edge. The compression of sequential

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski

Splitting via Interpolants 13

code by Transformation 1 can create multiple edges with the same source and
destination location. We can fold such a sequence of edges into one by using the
disjunctive composition.

Transformation 2 Given a program graph P = (Loc, `init , `err , δ) and two
nodes `, `′ ∈ Loc. For any two edges ((`, Inv), ϕ, (`′, Inv′)), ((`, Inv), ϕ′, (`′, Inv′))
∈ δ, we reduce the graph by replacing these edges by a new edge ((`, Inv), ϕ ∨
ϕ′, (`′, Inv′)).

In a graph P for which neither Transformation 1 nor Transformation 2 can be
applied, we know, that each location is either sink node or a loop header. Hence,
the application of Transformation 1 and Transformation 2 on a program P does
not change the satisfiability of the formula ϕ(P).

Theorem 3. The fix-point application of Transformation 1 and Transforma-
tion 2 on a program graph P = (Loc, `init , `err , δ) results in a program graph
P = (Loc′, `′init , `

′
err , δ

′), where Loc′ ⊆ Loc and any location ` ∈ Loc′ is reach-
able in P if and only if ` is reachable in P. We say that P is the reduced graph
of P.

A proof for Theorem 3 is given in [4].

5 Experimental Evaluation

Our implementation is called Ultimate. It is based on the Eclipse RCP Frame-
work. It allows to build tools as chains of plugins. For the purpose of experimental
comparison we have also reimplemented the IMPACT [1] software model checker
as a plugin in our framework. IMPACT is also an interpolation-based software
model checker. But IMPACT builds an unwinding instead of manipulating the
model itself. The framework allows us to compare the two approaches without
changing the peripherals, i.e. input file, parser, SMT solver etc. In both cases we
use Boogie PL [13] as input format and use SMTInterpol1 as SMT solver. Subse-
quently, we denote our reimplementation of IMPACT as reIMPACT. As base
for the comparison we use a set of simple examples (Table 1). The programs are
all written in Boogie PL and have less than 100 lines of code. Their purpose is
to emphasis the differences between our approach and the underlying approach
of IMPACT. They also show the effect of path insensitive interpolation on both
approaches. The tests were run on an AMD Athlon 64x2 Dual Core Processor
with 2.50 Ghz and 4.00 GB of RAM. The operating system is an 64-bit Windows
Server 2008 R2 Standard. Both approaches profit from the path insensitive inter-
polation. Without path insensitive interpolation, reIMPACT performs better
than Ultimate since it returns results for more of the example programs. But
with path insensitive interpolation, Ultimate returns more often a result than
reIMPACT. Example 01 is an 4-bit counter with nested conditional branchings.
And the final assertion states only about the highest bit. Therefore there are less

1 http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

14 Evren Ermis, Jochen Hoenicke, and Andreas Podelski

Table 1. The table shows the results of both model checking approaches on our
example Boogie files. Splits shows how often nodes have been copied. TPC is number
of theorem prover calls. Time is measured in millisec. LBE shows the results for path
insensitive interpolation turned on(Yes) and off(No). Whereas, the symbols stand for

"correct, %incorrect, – time out. The values in column Splits, TPC and Time relate
to the runs with path insensitive interpolation turned on.

Ultimate reIMPACT

No. Nodes Loops Splits TPC Time LBE Splits TPC Time LBE
Yes No Yes No

01 14 1 0 3 34 " " 3 1 35 " "

02 5 1 3 33 288 " " 4 8 108 " "

03 7 2 13 156 2040 " – – – – – –

04 36 1 42 766 13827 " – 6 52 1246 " –

05 31 1 1 16 462 % – 5 10 133 % –

06 11 1 6 85 9611 " – – – – – –

07 26 1 0 3 66 " – 6 19 539 " –

08 50 1 0 3 79 " – 6 25 5447 " "

19 98 1 0 3 116 " – – – – – –

10 194 1 0 3 165 " – – – – – –

paths to be checked and the assertion is a direct effect of the loop condition. As
expected, both approaches perform similarly on this example. Example 02 has
a single loop and no nested branching. The ART is a simple unrolling of the
loop. But the splitting causes more nodes in the model and therefore also more
theorem prover calls. Therefore, reIMPACT performs slightly better than Ul-
timate. Examples 04 is a standard planning example, gripper. The single loop
can be considered as an event handler. Its nested conditional branchings are
actions that can be performed. In each iteration only one of the branches can be
taken. As in example 02, this reduces the number of paths. Due to the splitting,
Ultimate produces more edges as the unwinding of reIMPACT does. Hence,
we have more theorem prover calls. Example 05 is the same program as example
04 but with a bug insertion. reIMPACT is still faster but this time Ultimate
shows comparable performance. Example 03 and 06(Example Sec. 2) have more
complex branching structures. Additionally the necessary invariants are less ob-
vious. It takes reIMPACT considerably more time to derive an invariant to
proof the correctness of the programs. Examples 07 - 10 show the major advan-
tage of our approach. The examples are 4-, 8-, 16-, 32-bit counters with a single
loop that contain 4, 8, 16 and 32 If-Then-Else branchings, respectively. In con-
trast to examples 01-06, in examples 07-10 the control flow is not restricted by
the semantics but depends on the current state of the variables. In these kind
of programs our approach is much fast than reIMPACT. The manipulation of
the model itself, as done by our splitting refinement, has the effect that obtained
information of previous iterations is taken into account in the current iteration.
This avoids the examination of paths that can’t be taken by the branching any-

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski

Splitting via Interpolants 15

way. reIMPACT iterates through all permutations of the branching. In our
approach the number of iterations remains the same and the additional time is
only spend in the SMT solver. This also shows that the shifting of the branch-
ing into the formula is handled by the solver very well. Overall, the examples
show that the combination of splitting with path insensitive interpolation has
potential. On our experimental set of examples it terminates more often than
the IMPACT approach. The slower performance on some examples, results from
creation of unnecessary edges in the splitting. This can be optimized further.

6 Related Work

We compare our tool to modern software model checking tools like Blast [5],
CPAchecker [6], and IMPACT [16]. The most common approaches, e.g. Blast,
SLAM [2], SATABS [10], use CEGAR algorithms with predicate abstraction.
In predicate abstraction the model is refined by newly obtained predicates e.g.
derived from interplants. In our approach we use the interpolants themselves in
order to refine the model. This technique has been introduced by Ken McMil-
lan [14]. In [16] he showed that his implementation of an interpolation-based
model checker, IMPACT, has a serious performance gain compared to tools using
predicate abstraction by avoiding the abstract image computation. As abstrac-
tion process IMPACT uses lazy abstraction as known from BLAST. The software
model checking procedure of IMPACT has also been implemented in other tools
e.g. Wolverine [12]. The main difference to our approach is the abstraction tech-
nique. In contrast to our approach, IMPACT uses an abstract reachability tree.
Our approach modifies the model itself. In this model the gathered information
is reused on every path examination. This approach is based on slicing abstrac-
tion [8]. Slicing abstraction was implemented in a tool called SLAB [11]. But in
contrast to our approach, SLAB uses predicate abstraction. In order to adapt
interpolation to slicing abstraction we use a technique called large block encod-
ing [4] which is implemented in CPAchecker. CPAchecker uses the same
software model checker procedure as Blast but compresses the model by joining
sequential code segments to single transitions.

7 Conclusion

We have introduced the concept of path insensitive interpolation. We also pre-
sented a first approach to use path insensitive interpolation in combination with
splitting refinement to derive loop invariants. We demonstrated with an exper-
imental implementation that it is in fact efficient to burden the SMT solver
the task to find useful interpolants by providing it more information about the
program. We did this by using large block encoding as a compression technique
and computing path interpolants on the compressed model. We showed that,
although just partially path insensitive, we obtain promising results with this
approach.

16 Evren Ermis, Jochen Hoenicke, and Andreas Podelski

Applying LBE on the entire model allows us a partial path insensitivity. But
the future work will be to find techniques to improve the path insensitivity. This
can be done by computing interpolants not over the paths of the compressed
model but by focusing on single locations. If considering a single location, one
can summarize the entire prefixes of the paths leading from the initial location to
the observed location and also summarize all suffixes leading from the oberserved
location to the error location. But even this approach would not be fully path
insensitive since we can still not take all loop iteration into consideration. Addi-
tionally this appraoch might cause a lot of redundant computations in the SMT
solver. Instead of one SMT solver call per path, we would cause one per each lo-
cation. This would get too costly. For this purpose, the communication between
the SMT solver and the software model checker must be improved. A steering
by the software model checker could also effect the quality of the interpolants.
Further, an optimization of the splitting refinement would reduce the number of
theorem prover calls and increase the performance of the approach.

References

[1] N. Amla and K. L. McMillan. Combining abstraction refinement and sat-based
model checking. In TACAS, pages 405–419, 2007.

[2] T. Ball and S. K. Rajamani. The slam project: debugging system software via
static analysis. In POPL, pages 1–3, New York, NY, USA, 2002. ACM.

[3] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
SIGSOFT Softw. Eng. Notes, 31:82–87, September 2005.

[4] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software
model checking via large-block encoding. In FMCAD, pages 25–32, 2009.

[5] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker blast: Applications to software engineering. Int. J. Softw. Tools Technol.
Transf., 9:505–525, October 2007.

[6] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In CAV, pages 184–190, 2011.

[7] A. Bradley, Z. Manna, and H. Sipma. What’s decidable about arrays? In E. Emer-
son and K. Namjoshi, editors, VMCAI, volume 3855 of LNCS, pages 427–442.
Springer Berlin / Heidelberg, 2006.

[8] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing abstractions. In
F. Arbab and M. Sirjani, editors, FSEN, 2007.

[9] R. Bruttomesso, S. Ghilardi, and S. Ranise. Rewriting-based quantifier-free in-
terpolation for a theory of arrays. In RTA, pages 171–186, 2011.

[10] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based pred-
icate abstraction for ANSI-C. In TACAS, volume 3440 of LNCS, pages 570–574.
Springer Verlag, 2005.

[11] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. SLAB: A certifying
model checker for infinite-state concurrent systems. In TACAS, LNCS. Springer-
Verlag, 2010.

[12] D. Kroening and G. Weissenbacher. Interpolation-based software verification with
wolverine. In G. Gopalakrishnan and S. Qadeer, editors, CAV, volume 6806 of
LNCS, pages 573–578. Springer Berlin / Heidelberg, 2011.

http://swt.informatik.uni-freiburg.de/~ermis
http://swt.informatik.uni-freiburg.de/~hoenicke
http://swt.informatik.uni-freiburg.de/~podelski

Splitting via Interpolants 17

[13] K. R. M. Leino. This is Boogie 2. Manuscript KRML 178, 2008. Available at
http://research.microsoft.com/~leino/papers.html.

[14] K. L. McMillan. Interpolation and SAT-based model checking. In CAV, pages
1–13, 2003.

[15] K. L. McMillan. Applications of Craig interpolants in model checking. In TACAS,
pages 1–12, 2005.

[16] K. L. McMillan. Lazy abstraction with interpolants. In CAV, pages 123–136,
2006.

http://research.microsoft.com/~leino/papers.html

	Splitting via InterpolantsA preliminary version appeared as UNU-IIST, Macau, Technical Report 449, June 2011

